Search results for "Condensed Matter::Materials Science"

showing 10 items of 1383 documents

Out-of-plane orientation of luminescent excitons in two-dimensional indium selenide.

2019

Van der Waals materials offer a wide range of atomic layers with unique properties that can be easily combined to engineer novel electronic and photonic devices. A missing ingredient of the van der Waals platform is a two-dimensional crystal with naturally occurring out-of-plane luminescent dipole orientation. Here we measure the far-field photoluminescence intensity distribution of bulk InSe and two-dimensional InSe, WSe2 and MoSe2. We demonstrate, with the support of ab-initio calculations, that layered InSe flakes sustain luminescent excitons with an intrinsic out-of-plane orientation, in contrast with the in-plane orientation of dipoles we find in two-dimensional WSe2 and MoSe2 at room-…

0301 basic medicineMaterials sciencePhotoluminescenceElectronic properties and materialsExcitonScienceGeneral Physics and Astronomychemistry.chemical_elementPhysics::Optics02 engineering and technologyTwo-dimensional materials7. Clean energyGeneral Biochemistry Genetics and Molecular BiologyArticleCrystal03 medical and health sciencessymbols.namesakeCondensed Matter::Materials SciencePhysics::Atomic and Molecular ClustersPhysics::Atomic Physicslcsh:ScienceMultidisciplinarybusiness.industryCondensed Matter::OtherQGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectDipole030104 developmental biologySemiconductorchemistrysymbolsOptoelectronicslcsh:Qvan der Waals forcePhotonics0210 nano-technologybusinessIndiumNature communications
researchProduct

Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber

2009

Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber is experimentally and numerically investigated. Guiding light in such fiber occurs via two mechanisms: photonic bandgap in the central silica core or total internal reflection in the germanium doped inclusions. By properly combining spectral filtering, dispersion tailoring and pump coupling into the fiber modes, we experimentally demonstrate efficient supercontinuum generation with controllable spectral bandwidth.

060.2400;190.4370Materials scienceOptical fiberPhysics::OpticsPolarization-maintaining optical fiber02 engineering and technologySensitivity and Specificity01 natural sciences7. Clean energyGraded-index fiberlaw.invention010309 opticsCondensed Matter::Materials Science020210 optoelectronics & photonicsOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringScattering RadiationDispersion-shifted fiberNonlinear Sciences::Pattern Formation and SolitonsOptical FibersPhotonic crystalPhotonsbusiness.industryLasersReproducibility of ResultsSignal Processing Computer-AssistedEquipment DesignMicrostructured optical fiberAtomic and Molecular Physics and OpticsSupercontinuumEquipment Failure AnalysisNonlinear DynamicsComputer-Aided DesignOptoelectronicsbusinessElectromagnetic pulse; energy gap; fibersPhotonic-crystal fiber
researchProduct

Magnetic dichroism in angle-resolved hard x-ray photoemission from buried layers

2011

This work reports the measurement of magnetic dichroism in angular-resolved photoemission from in-plane magnetized buried thin films. The high bulk sensitivity of hard x-ray photoelectron spectroscopy (HAXPES) in combination with circularly polarized radiation enables the investigation of the magnetic properties of buried layers. HAXPES experiments with an excitation energy of 8 keV were performed on exchange-biased magnetic layers covered by thin oxide films. Two types of structures were investigated with the IrMn exchange-biasing layer either above or below the ferromagnetic layer: one with a CoFe layer on top and another with a Co${}_{2}$FeAl layer buried beneath the IrMn layer. A pronou…

420Materials scienceMagnetic momentCondensed matter physicsAnalytical chemistryDichroismengineering.materialCondensed Matter PhysicsHeusler compoundElectronic Optical and Magnetic Materialscircularly polarized x-raysCondensed Matter::Materials ScienceX-ray photoelectron spectroscopyFerromagnetismX-ray magnetic circular dichroismmagnetic dichroismangular-resolved hard x-ray photoemissionengineeringThin filmExcitationPhysical Review B
researchProduct

Effects of rapid thermal annealing on the optical properties of low-loss 1.3μm GaInNAs∕GaAs saturable Bragg reflectors

2004

We report studies of the effect of rapid thermal annealing (RTA) on the optical properties of a low-loss 1.3 mum saturable Bragg reflector (SBR), consisting of a GaInNAs/GaAs single quantum well embedded in an AlAs/GaAs Bragg reflector grown monolithically on a GaAs substrate. RTA gives rise to a blueshift of the photoluminescence (PL) peak (and therefore of the excitonic absorption peak) and an enhancement of PL intensity, while the reflectivity properties including peak reflectivity and bandwidth are not degraded. Temperature dependent photoluminescence measurements show that the RTA-induced blueshift of photoluminescence consists of two components: one originating from the increase of op…

:Science::Physics::Optics and light [DRNTU]PhotoluminescenceMaterials scienceCondensed Matter::Otherbusiness.industrychemical beamPhysics::OpticsGeneral Physics and AstronomyNonlinear opticsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectDistributed Bragg reflectorBlueshiftGallium arsenideCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistryOptoelectronicsSemiconducting galliumRapid thermal annealingbusinessSemiconductor quantum wellsRefractive indexQuantum wellJournal of Applied Physics
researchProduct

Study of the electronic and atomic structure of thermally treated SrTiO3(110) surfaces

2003

The electronic structure of heated SrTiO3(110) surfaces was investigated with metastable impact electron spectroscopy and ultraviolet photoelectron spectroscopy (He(I). Scanning tunnelling microscopy and atomic force microscopy (AFM) were used to study the topology of the surface. The crystals were heated up to 1000 °C under reducing conditions in ultrahigh vacuum or under oxidizing conditions in synthetic air for 1 h, respectively. Under both conditions microfacetting of the surface is observed. The experimental results are compared with ab initio Hartree-Fock calculations, also presented here, carried out for both ideal and reconstructed SrTiO 3(110) surfaces. The results give direct evid…

Ab initioAnalytical chemistrySurfaces and InterfacesGeneral ChemistryElectronic structureCondensed Matter PhysicsElectron spectroscopySurfaces Coatings and Filmslaw.inventionCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistryAb initio quantum chemistry methodslawMicroscopyMaterials ChemistryStrontium titanateAtomic physicsScanning tunneling microscopeUltraviolet photoelectron spectroscopySurface and Interface Analysis
researchProduct

Modeling of defects and surfaces in perovskite ferroelectrics

2002

The results of electronic structure calculations for different terminations of SrTiO3 (100) and (110) perovskite thin films are discussed. These calculations are based on the ab initio Hartree-Fock (HF) method and Density Functional Theory (DFT). Results are compared with previous ab initio plane-wave LDA and classical Shell Model (SM) calculations. Calculated considerable increase of the Ti – O chemical bond covalency nearby the surface is confirmed by experimental data. Our quantum chemical calculations performed by means of the intermediate neglect of differential overlap (INDO) method confirm the existence of self-trapped electrons in KNbO3, KTaO3 and BaTiO3 crystals. The relevant latti…

Ab initioElectronic structureElectronCondensed Matter PhysicsMolecular physicsInorganic ChemistryCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistryChemical bondComputer Science::Systems and ControlComputational chemistryMaterials ChemistryStrontium titanateDensity functional theoryLuminescencePerovskite (structure)Journal of Crystal Growth
researchProduct

<title>Influence of radiation defects on exciton-magnon interactions in nickel oxide</title>

2005

Influence of radiation defects on the optical absorption spectrum of nickel oxide (NiO) was studied at 6 K in the near-IR energy range of 7750-8300 cm-1 corresponding to the magnetic-dipole transition 3A 2g(F )->3T 2g(F ) at nickel sites. NiO single crystals grown by the method of chemical transport reactions on the MgO(100) substrates were irradiated by the neutron fluences up to 5x1018 cm-2. Two sharp lines were observed at the low-energy side of the band: the peak at 7805 cm-1 is assigned to the pure exciton transition, whereas the peak at 7845 cm-1, to the exciton-magnon excitation that occurs at the Brillouin zone-center (BZC). An increase of the defect concentration at higher fluences…

Absorption spectroscopyCondensed matter physicsMagnetic dipole transitionNickel oxideMagnonExcitonchemistry.chemical_elementCondensed Matter::Materials ScienceNickelNuclear magnetic resonancechemistryCondensed Matter::Strongly Correlated ElectronsIrradiationAbsorption (electromagnetic radiation)SPIE Proceedings
researchProduct

Interpretation of the Ni K-edge EXAFS in nanocrystalline nickel oxide using molecular dynamics simulations

2011

Abstract Analysis of atomic structure at the nanoscale is a challenging task, complicated by relaxation phenomena and thermal disorder. In this work, the x-ray absorption spectroscopy at the Ni K-edge was used to address this problem in nanocrystalline NiO (nano-NiO) at 300 K. The analysis of the first two coordination shells using conventional two-shell single-scattering approximation allowed us to determine the expansion of the average lattice but contraction of the Ni―O bonds in the first coordination shell in nano-NiO in comparison with the bulk nickel oxide. The EXAFS signal generated within the first six coordination shells (up to ~ 6.5 A) was successfully interpreted using classical …

Absorption spectroscopyExtended X-ray absorption fine structureChemistryNickel oxideAb initioAnalytical chemistry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesNanocrystalline materialElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceMolecular dynamicsK-edgeChemical physicsSurface-extended X-ray absorption fine structure0103 physical sciencesMaterials ChemistryCeramics and Compositesddc:660010306 general physics0210 nano-technology
researchProduct

Probing NiO nanocrystals by EXAFS spectroscopy

2010

Abstract The structure relaxation in nanocrystalline NiO (nano-NiO, 13 nm crystallite size) has been studied by X-ray absorption spectroscopy at the Ni K-edge at 300 K. Conventional single-scattering analysis of the EXAFS signals from the first two coordination shells showed a lattice volume expansion by about 1% and a contraction of the Ni–O bonds by about 0.5% in nano-NiO compared to microcrystalline NiO. A more sophisticated approach, based on a combination of classical molecular dynamics and ab initio multiple-scattering EXAFS theory, allowed us to interpret both static relaxation and lattice dynamics in nano-NiO.

Absorption spectroscopyExtended X-ray absorption fine structureChemistryNon-blocking I/OAb initio02 engineering and technologyGeneral ChemistryCrystal structure021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesNanocrystalline materialCondensed Matter::Materials ScienceAb initio quantum chemistry methodsComputational chemistry0103 physical sciencesMaterials ChemistryPhysical chemistryCondensed Matter::Strongly Correlated ElectronsCrystallite010306 general physics0210 nano-technologySolid State Communications
researchProduct

Hard x-ray photoelectron spectroscopy of buried Heusler compounds

2009

This work reports on high energy photoelectron spectroscopy from the valence band of buried Heusler thin films (Co2MnSi and Co2FeAl0.5Si0.5) excited by photons of about 6?keV energy. The measurements were performed on thin films covered by MgO and SiOx with different thicknesses from 1 to 20?nm of the insulating layer and additional AlOx or Ru protective layers. It is shown that the insulating layer does not affect the high energy spectra of the Heusler compound close to the Fermi energy. The high resolution measurements of the valence band close to the Fermi energy indicate a very large electron mean free path of the electrons through the insulating layer. The spectra of the buried thin fi…

Acoustics and UltrasonicsCondensed matter physicsChemistryMean free pathEnergy level splittingFermi levelFermi energyengineering.materialCondensed Matter PhysicsHeusler compoundElectron spectroscopySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials Sciencesymbols.namesakeX-ray photoelectron spectroscopysymbolsengineeringCondensed Matter::Strongly Correlated ElectronsSpectroscopyJournal of Physics D: Applied Physics
researchProduct