6533b7d8fe1ef96bd126a1c5

RESEARCH PRODUCT

<title>Influence of radiation defects on exciton-magnon interactions in nickel oxide</title>

Alexei KuzminIlmo SildosNina Mironova-ulmaneV. Skvortsova

subject

Absorption spectroscopyCondensed matter physicsMagnetic dipole transitionNickel oxideMagnonExcitonchemistry.chemical_elementCondensed Matter::Materials ScienceNickelNuclear magnetic resonancechemistryCondensed Matter::Strongly Correlated ElectronsIrradiationAbsorption (electromagnetic radiation)

description

Influence of radiation defects on the optical absorption spectrum of nickel oxide (NiO) was studied at 6 K in the near-IR energy range of 7750-8300 cm-1 corresponding to the magnetic-dipole transition 3A 2g(F )->3T 2g(F ) at nickel sites. NiO single crystals grown by the method of chemical transport reactions on the MgO(100) substrates were irradiated by the neutron fluences up to 5x1018 cm-2. Two sharp lines were observed at the low-energy side of the band: the peak at 7805 cm-1 is assigned to the pure exciton transition, whereas the peak at 7845 cm-1, to the exciton-magnon excitation that occurs at the Brillouin zone-center (BZC). An increase of the defect concentration at higher fluences results in the lowering of the magnon-satellite-peak intensity. The long-wavelength BZC magnon absorption is sensitive to the long- range magnetic ordering, which becomes destroyed in the presence of the radiation defects. Therefore, the observed decrease of the peak intensity is attributed to the decrease of the spin-spin correlation length due to inhomogeneous broadening.© (2005) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

https://doi.org/10.1117/12.639158