Search results for "Magnon"

showing 10 items of 66 documents

An insulating doped antiferromagnet with low magnetic symmetry as a room temperature spin conduit

2020

We report room temperature long-distance spin transport of magnons in antiferromagnetic thin film hematite doped with Zn. The additional dopants significantly alter the magnetic anisotropies, resulting in a complex equilibrium spin structure that is capable of efficiently transporting spin angular momentum at room temperature without the need for a well-defined, pure easy-axis or easy-plane anisotropy. We find intrinsic magnon spin-diffusion lengths of up to 1.5 {\mu}m, and magnetic domain governed decay lengths of 175 nm for the low frequency magnons, through electrical transport measurements demonstrating that the introduction of non-magnetic dopants does not strongly reduce the transport…

010302 applied physicsCondensed Matter - Materials ScienceMaterials scienceCondensed Matter - Mesoscale and Nanoscale PhysicsPhysics and Astronomy (miscellaneous)Magnetic domainCondensed matter physicsMagnetoresistanceMagnonMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologySpin structure021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Materials ScienceMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesMagnetic dampingAntiferromagnetismCondensed Matter::Strongly Correlated Electrons0210 nano-technologyAnisotropySpin (physics)Applied Physics Letters
researchProduct

Enhancement of the Spin Pumping Effect by Magnon Confluence Process in YIG/Pt Bilayers

2019

The experimental investigation of the spin pumping process by dipolar‐exchange magnons parametrically excited in in‐plane magnetized yttrium iron garnet/platinum bilayers is presented. The electric voltage generated in the platinum layer via the inverse spin Hall effect (ISHE) results from contributions of two opposite spin currents formed by the longitudinal spin Seebeck effect and by the spin pumping from parametric magnons. In the field‐dependent measurements of the spin pumping‐induced component of the ISHE‐voltage, a clearly visible sharp peak is detected at high pumping powers. It is found that the peak position is determined by the process of confluence of two parametrically excited …

010302 applied physicsSpin pumpingMaterials scienceCondensed matter physicsField (physics)MagnonYttrium iron garnet02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistryExcited state0103 physical sciencesThermoelectric effectSpin Hall effectCondensed Matter::Strongly Correlated Electrons0210 nano-technologySpin-½physica status solidi (b)
researchProduct

<title>Influence of radiation defects on exciton-magnon interactions in nickel oxide</title>

2005

Influence of radiation defects on the optical absorption spectrum of nickel oxide (NiO) was studied at 6 K in the near-IR energy range of 7750-8300 cm-1 corresponding to the magnetic-dipole transition 3A 2g(F )->3T 2g(F ) at nickel sites. NiO single crystals grown by the method of chemical transport reactions on the MgO(100) substrates were irradiated by the neutron fluences up to 5x1018 cm-2. Two sharp lines were observed at the low-energy side of the band: the peak at 7805 cm-1 is assigned to the pure exciton transition, whereas the peak at 7845 cm-1, to the exciton-magnon excitation that occurs at the Brillouin zone-center (BZC). An increase of the defect concentration at higher fluences…

Absorption spectroscopyCondensed matter physicsMagnetic dipole transitionNickel oxideMagnonExcitonchemistry.chemical_elementCondensed Matter::Materials ScienceNickelNuclear magnetic resonancechemistryCondensed Matter::Strongly Correlated ElectronsIrradiationAbsorption (electromagnetic radiation)SPIE Proceedings
researchProduct

Temperature dependence of the non-local spin Seebeck effect in YIG/Pt nanostructures

2017

We study the transport of thermally excited non-equilibrium magnons through the ferrimagnetic insulator YIG using two electrically isolated Pt strips as injector and detector. The diffusing magnons induce a non-local inverse spin Hall voltage in the detector corresponding to the so-called non-local spin Seebeck effect (SSE). We measure the non-local SSE as a function of temperature and strip separation. In experiments at room temperature we observe a sign change of the non-local SSE voltage at a characteristic strip separation d0, in agreement with previous investigations. At lower temperatures however, we find a strong temperature dependence of d0. This suggests that both the angular momen…

Angular momentumMaterials science530 PhysicsFOS: Physical sciencesGeneral Physics and AstronomyInsulator (electricity)02 engineering and technology01 natural sciencesCondensed Matter::Materials ScienceFerrimagnetismHall effectMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesThermoelectric effectddc:530010306 general physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsMagnon530 Physik021001 nanoscience & nanotechnologylcsh:QC1-999ddc:Excited stateSpin Hall effectCondensed Matter::Strongly Correlated Electrons0210 nano-technologylcsh:PhysicsAIP Advances
researchProduct

Magnetic excitations of a doped two-dimensional antiferromagnet

1993

Magnetic excitations of the two-dimensional (2D) t-J model are considered in the presence of a small concentration of holes c. The spin-wave approximation used implies long-range antiferromagnetic ordering from the beginning. Migdal's theorem is shown to be valid for the model considered. The energy spectrum of the magnons is determined with the help of the one-pole approximation for the hole Green's function. If the concentration of mobile holes is larger than a critical value an additional branch of overdamped magnons arises near the \ensuremath{\Gamma} and M points of the Brillouin zone. This is connected with the generation of electron-hole pairs (the Stoner excitations) by magnons. The…

Brillouin zoneSuperconductivityPhysicsCondensed matter physicsSpin waveMagnont-J modelOrder (ring theory)AntiferromagnetismCondensed Matter::Strongly Correlated ElectronsSpin-½Physical Review B
researchProduct

Spin transport in multilayer systems with fully epitaxial NiO thin films

2018

We report the generation and transport of thermal spin currents in fully epitaxial $\ensuremath{\gamma}\text{\ensuremath{-}}\mathrm{F}{\mathrm{e}}_{2}{\mathrm{O}}_{3}/\mathrm{NiO}(001)/\mathrm{Pt}$ and $\mathrm{F}{\mathrm{e}}_{3}{\mathrm{O}}_{4}/\mathrm{NiO}(001)/\mathrm{Pt}$ trilayers. A thermal gradient, perpendicular to the plane of the sample, generates a magnonic spin current in the ferrimagnetic maghemite $(\ensuremath{\gamma}\text{\ensuremath{-}}\mathrm{F}{\mathrm{e}}_{2}{\mathrm{O}}_{3})$ and magnetite $(\mathrm{F}{\mathrm{e}}_{3}{\mathrm{O}}_{4})$ thin films by means of the spin Seebeck effect. The spin current propagates across the epitaxial, antiferromagnetic insulating NiO layer…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physics530 PhysicsMagnonNon-blocking I/OInverseMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology530 Physik021001 nanoscience & nanotechnologyEpitaxy01 natural sciencesCondensed Matter::Materials ScienceFerrimagnetism0103 physical sciencesSpin Hall effectAntiferromagnetismCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologySpin-½
researchProduct

Reconstruction of an effective magnon mean free path distribution from spin Seebeck measurements in thin films

2017

A thorough understanding of the mean-free-path (MFP) distribution of the energy carriers is crucial to engineer and tune the transport properties of materials. In this context, a significant body of work has investigated the phonon and electron MFP distribution, however, similar studies of the magnon MFP distribution have not been carried out so far. In this work, we used thickness-dependence measurements of the longitudinal spin Seebeck (LSSE) effect of yttrium iron garnet films to reconstruct the cumulative distribution of a SSE related effective magnon MFP. By using the experimental data reported by Guo et al. [Phys. Rev. X 6, 031012 (2016)], we adapted the phonon MFP reconstruction algo…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsPhononMean free pathMagnonYttrium iron garnetGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesReconstruction algorithmContext (language use)02 engineering and technologyElectron021001 nanoscience & nanotechnology01 natural scienceschemistry.chemical_compoundCondensed Matter::Materials Sciencechemistry0103 physical sciencesCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologySpin-½
researchProduct

Thermal generation of spin current in epitaxial CoFe2O4 thin films

2016

The longitudinal spin Seebeck effect (LSSE) has been investigated in high-quality epitaxial CoFe2O4 (CFO) thin films. The thermally excited spin currents in the CFO films are electrically detected in adjacent Pt layers due to the inverse spin Hall effect (ISHE). The LSSE signal exhibits a linear increase with increasing temperature gradient, yielding a LSSE coefficient of ~100 nV/K at room temperature. The temperature dependence of the LSSE is investigated from room temperature down to 30 K, showing a significant reduction at low temperatures, revealing that the total amount of thermally generated magnons decreases. Furthermore, we demonstrate that the spin Seebeck effect is an effective to…

Condensed Matter - Materials ScienceMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsMagnetic momentMagnonMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology7. Clean energy01 natural sciencesMagnetic fieldMagnetic anisotropyCondensed Matter::Materials ScienceHall effectCondensed Matter::Superconductivity0103 physical sciencesThermoelectric effectSpin Hall effectThin film010306 general physics0210 nano-technology
researchProduct

Magnetic Coupling in Y3Fe5O12/Gd3Fe5O12 Heterostructures

2021

Ferrimagnetic ${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$ (YIG) is the prototypical material for studying magnonic properties due to its exceptionally low damping. By substituting the yttrium with rare earth elements that have a net magnetic moment, we can introduce an additional spin degree of freedom. Here, we study the magnetic coupling in epitaxial ${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$/${\mathrm{Gd}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$ (YIG/GIG) heterostructures grown by pulsed laser deposition. From bulk sensitive magnetometry and surface sensitive spin Seebeck effect and spin Hall magnetoresistance measurements, we determine the alignment of the heterostruct…

Condensed Matter::Materials ScienceMagnetizationMaterials scienceMagnetic momentMagnetoresistanceFerromagnetismCondensed matter physicsFerrimagnetismMagnonGeneral Physics and AstronomyCondensed Matter::Strongly Correlated ElectronsCoupling (probability)Inductive couplingPhysical Review Applied
researchProduct

Electrical transport with temperature-induced spin disorder in NiMnSb

2019

Abstract We investigate theoretically the combined effect of phonons and magnons caused by finite temperatures on the electrical resistivity of nonstoichiometric half-Heusler NiMnSb alloy. The coherent potential approximation within the alloy analogy model is employed for an efficient treatment of chemical impurities, atomic displacements, and magnetic disorder. Spin fluctuations of local Mn moments are described by two models: (i) uncompensated disordered local moment approach and (ii) tilting of the moments. The calculated resistivity agrees with experimental data, the agreement is good up to 600 K. We show that a strong magnetic disorder leads to a violation of the Matthiessen’s rule for…

Condensed Matter::Materials ScienceMaterials scienceSpin polarizationCondensed matter physicsElectrical resistivity and conductivityPhononImpurityMagnonCoherent potential approximationCurie temperatureCondensed Matter PhysicsSpin (physics)Electronic Optical and Magnetic MaterialsJournal of Magnetism and Magnetic Materials
researchProduct