Search results for "Conditional entropy"
showing 10 items of 24 documents
Information dynamics of brain-heart physiological networks during sleep
2014
This study proposes an integrated approach, framed in the emerging fields of network physiology and information dynamics, for the quantitative analysis of brain-heart interaction networks during sleep. With this approach, the time series of cardiac vagal autonomic activity and brain wave activities measured respectively as the normalized high frequency component of heart rate variability and the EEG power in the δ, θ, Ï, and β bands, are considered as realizations of the stochastic processes describing the dynamics of the heart system and of different brain sub-systems. Entropy-based measures are exploited to quantify the predictive information carried by each (sub)system, and to dissec…
A validity and reliability study of Conditional Entropy Measures of Pulse Rate Variability
2019
In this work, we present the feasibility to use a simpler methodological approach for the assessment of the short-term complexity of Heart Rate Variability (HRV). Specifically, we propose to exploit Pulse Rate Variability (PRV) recorded through photoplethysmography in place of HRV measured from the ECG, and to compute complexity via a linear Gaussian approximation in place of the standard model-free methods (e.g., nearest neighbor entropy estimates) usually applied to HRV. Linear PRV-based and model-free HRV-based complexity measures were compared via statistical tests, correlation analysis and Bland-Altman plots, demonstrating an overall good agreement. These results support the applicabil…
Compensated transfer entropy as a tool for reliably estimating information transfer in physiological time series
2013
We present a framework for the estimation of transfer entropy (TE) under the conditions typical of physiological system analysis, featuring short multivariate time series and the presence of instantaneous causality (IC). The framework is based on recognizing that TE can be interpreted as the difference between two conditional entropy (CE) terms, and builds on an efficient CE estimator that compensates for the bias occurring for high dimensional conditioning vectors and follows a sequential embedding procedure whereby the conditioning vectors are formed progressively according to a criterion for CE minimization. The issue of IC is faced accounting for zero-lag interactions according to two a…
Comparison of short-term heart rate variability indexes evaluated through electrocardiographic and continuous blood pressure monitoring
2019
Heart rate variability (HRV) analysis represents an important tool for the characterization of complex cardiovascular control. HRV indexes are usually calculated from electrocardiographic (ECG) recordings after measuring the time duration between consecutive R peaks, and this is considered the gold standard. An alternative method consists of assessing the pulse rate variability (PRV) from signals acquired through photoplethysmography, a technique also employed for the continuous noninvasive monitoring of blood pressure. In this work, we carry out a thorough analysis and comparison of short-term variability indexes computed from HRV time series obtained from the ECG and from PRV time series …
Feasibility of Ultra-Short-Term Analysis of Heart Rate and Systolic Arterial Pressure Variability at Rest and during Stress via Time-Domain and Entro…
2022
Heart Rate Variability (HRV) and Blood Pressure Variability (BPV) are widely employed tools for characterizing the complex behavior of cardiovascular dynamics. Usually, HRV and BPV analyses are carried out through short-term (ST) measurements, which exploit ~five-minute-long recordings. Recent research efforts are focused on reducing the time series length, assessing whether and to what extent Ultra-Short-Term (UST) analysis is capable of extracting information about cardiovascular variability from very short recordings. In this work, we compare ST and UST measures computed on electrocardiographic R-R intervals and systolic arterial pressure time series obtained at rest and during both post…
Non-uniform multivariate embedding to assess the information transfer in cardiovascular and cardiorespiratory variability series
2012
The complexity of the short-term cardiovascular control prompts for the introduction of multivariate (MV) nonlinear time series analysis methods to assess directional interactions reflecting the underlying regulatory mechanisms. This study introduces a new approach for the detection of nonlinear Granger causality in MV time series, based on embedding the series by a sequential, non-uniform procedure, and on estimating the information flow from one series to another by means of the corrected conditional entropy. The approach is validated on short realizations of linear stochastic and nonlinear deterministic processes, and then evaluated on heart period, systolic arterial pressure and respira…
Cardiovascular and respiratory variability during orthostatic and mental stress: A comparison of entropy estimators
2017
The aim of this study is to characterize cardiovascular and respiratory signals during orthostatic and mental stress as reflected in indices of entropy and complexity, providing a comparison between the performance of different estimators. To this end, the heart rate variability, systolic blood pressure, diastolic blood pressure and respiration time series were extracted from the recordings of 61 healthy volunteers undergoing a protocol consisting of supine rest, head-up tilt test and mental arithmetic task. The analysis was performed in the information domain using measures of entropy and conditional entropy, estimated through model-based (linear) and model-free (binning, nearest neighbor)…
MuTE: a MATLAB toolbox to compare established and novel estimators of the multivariate transfer entropy.
2014
A challenge for physiologists and neuroscientists is to map information transfer between components of the systems that they study at different scales, in order to derive important knowledge on structure and function from the analysis of the recorded dynamics. The components of physiological networks often interact in a nonlinear way and through mechanisms which are in general not completely known. It is then safer that the method of choice for analyzing these interactions does not rely on any model or assumption on the nature of the data and their interactions. Transfer entropy has emerged as a powerful tool to quantify directed dynamical interactions. In this paper we compare different ap…
Detecting nonlinear causal interactions between dynamical systems by non-uniform embedding of multiple time series.
2010
This study introduces a new approach for the detection of nonlinear Granger causality between dynamical systems. The approach is based on embedding the multivariate (MV) time series measured from the systems X and Y by means of a sequential, non-uniform procedure, and on using the corrected conditional entropy (CCE) as unpredictability measure. The causal coupling from X to Y is quantified as the relative decrease of CCE measured after allowing the series of X to enter the embedding procedure for the description of Y. The ability of the approach to quantify nonlinear causality is assessed on MV time series measured from simulated dynamical systems with unidirectional coupling (the Rössler-…
Optimal Placement of Pressure Sensors Using Fuzzy DEMATEL-Based Sensor Influence
2020
[EN] Nowadays, optimal sensor placement (OSP) for leakage detection in water distribution networks is a lively field of research, and a challenge for water utilities in terms of network control, management, and maintenance. How many sensors to install and where to install them are crucial decisions to make for those utilities to reach a trade-off between efficiency and economy. In this paper, we address the where-to-install-them part of the OSP through the following elements: nodes' sensitivity to leakage, uncertainty of information, and redundancy through conditional entropy maximisation. We evaluate relationships among candidate sensors in a network to get a picture of the mutual influenc…