Search results for "Conditional"
showing 10 items of 294 documents
Square of Opposition Under Coherence
2016
Various semantics for studying the square of opposition have been proposed recently. So far, only (Gilio et al., 2016) studied a probabilistic version of the square where the sentences were interpreted by (negated) defaults. We extend this work by interpreting sentences by imprecise (set-valued) probability assessments on a sequence of conditional events. We introduce the acceptability of a sentence within coherence-based probability theory. We analyze the relations of the square in terms of acceptability and show how to construct probabilistic versions of the square of opposition by forming suitable tripartitions. Finally, as an application, we present a new square involving generalized qu…
Conditional convex orders and measurable martingale couplings
2014
Strassen's classical martingale coupling theorem states that two real-valued random variables are ordered in the convex (resp.\ increasing convex) stochastic order if and only if they admit a martingale (resp.\ submartingale) coupling. By analyzing topological properties of spaces of probability measures equipped with a Wasserstein metric and applying a measurable selection theorem, we prove a conditional version of this result for real-valued random variables conditioned on a random element taking values in a general measurable space. We also provide an analogue of the conditional martingale coupling theorem in the language of probability kernels and illustrate how this result can be appli…
Moderating effects of subgroups in linear models
1989
SUMMARY Possibilities for moderating effects of a subgrouping variable on strength or direction of an association have been much discussed by social scientists but have not been given satisfactory statistical formulations. The results concern directed measures of associations in linear models containing just three variables. Some key words: Analysis of covariance; Analysis of variance; cG-distribution; Conditional independence; Graphical chain model; Parallel regressions; Yule-Simpson paradox. 1. INTRODUCTION Linear models are commonly used as a framework to estimate and test how a continuous response variable depends on potential influencing variables. This paper is concerned with the situ…
Derived variables calculated from similar joint responses: some characteristics and examples
1995
Abstract A technique (Cox and Wermuth, 1992) is reviewed for finding linear combinations of a set of response variables having special relations of linear conditional independence with a set of explanatory variables. A theorem in linear algebra is used both to examine conditions in which the derived variables take a specially simple form and lead to reduced computations. Examples are discussed of medical and psychological investigations in which the method has aided interpretation.
On Independent Component Analysis with Stochastic Volatility Models
2017
Consider a multivariate time series where each component series is assumed to be a linear mixture of latent mutually independent stationary time series. Classical independent component analysis (ICA) tools, such as fastICA, are often used to extract latent series, but they don't utilize any information on temporal dependence. Also financial time series often have periods of low and high volatility. In such settings second order source separation methods, such as SOBI, fail. We review here some classical methods used for time series with stochastic volatility, and suggest modifications of them by proposing a family of vSOBI estimators. These estimators use different nonlinearity functions to…
Poisson Regression with Change-Point Prior in the Modelling of Disease Risk around a Point Source
2003
Bayesian estimation of the risk of a disease around a known point source of exposure is considered. The minimal requirements for data are that cases and populations at risk are known for a fixed set of concentric annuli around the point source, and each annulus has a uniquely defined distance from the source. The conventional Poisson likelihood is assumed for the counts of disease cases in each annular zone with zone-specific relative risk and parameters and, conditional on the risks, the counts are considered to be independent. The prior for the relative risk parameters is assumed to be piecewise constant at the distance having a known number of components. This prior is the well-known cha…
Response models for mixed binary and quantitative variables
1992
SUMMARY A number of special representations are considered for the joint distribution of qualitative, mostly binary, and quantitative variables. In addition to the conditional Gaussian models and to conditional Gaussian regression chain models some emphasis is placed on models derived from an underlying multivariate normal distribution and on models in which discrete probabilities are specified linearly in terms of unknown parameters. The possibilities for choosing between the models empirically are examined, as well as the testing of independence and conditional independence and the estimation of parameters. Often the testing of independence is exactly or nearly the same for a number of di…
A Comment on the Coefficient of Determination for Binary Responses
1992
Abstract Linear logistic or probit regression can be closely approximated by an unweighted least squares analysis of the regression linear in the conditional probabilities provided that these probabilities for success and failure are not too extreme. It is shown how this restriction on the probabilities translates into a restriction on the range of the coefficient of determination R 2 so that, as a consequence, R 2 is not suitable to judge the effectiveness of linear regressions with binary responses even if an important relation is present.
A Unified Approach to Likelihood Inference on Stochastic Orderings in a Nonparametric Context
1998
Abstract For data in a two-way contingency table with ordered margins, we consider various hypotheses of stochastic orders among the conditional distributions considered by rows and show that each is equivalent to requiring that an invertible transformation of the vectors of conditional row probabilities satisfies an appropriate set of linear inequalities. This leads to the construction of a general algorithm for maximum likelihood estimation under multinomial sampling and provides a simple framework for deriving the asymptotic distribution of log-likelihood ratio tests. The usual stochastic ordering and the so called uniform and likelihood ratio orderings are considered as special cases. I…
On Association Models Defined over Independence Graphs
1998
Conditions on joint distributions are given under which two variables will be conditionally associated whenever an independence graph does not imply a corresponding conditional independence statement. To this end the notions of parametric cancellation, of stable paths and of quasi-linear models are discussed in some detail.