Search results for "Conductivity"
showing 10 items of 1988 documents
2018
CrN thin films with an N/Cr ratio of 95% were deposited by reactive magnetron sputtering onto (0 0 0 1) sapphire substrates. X-ray diffraction and pole figure texture analysis show CrN (1 1 1) epitaxial growth in a twin domain fashion. By changing the nitrogen versus argon gas flow mixture and the deposition temperature, thin films with different surface morphologies ranging from grainy rough textures to flat and smooth films were prepared. These parameters can also affect the CrN x system, with the film compound changing between semiconducting CrN and metallic Cr2N through the regulation of the nitrogen content of the gas flow and the deposition temperature at a constant deposition pressur…
Flash annealing influence on structural and electrical properties of TiO2/TiO/Ti periodic multilayers
2014
Abstract Multilayered structures with a 40 nm period composed of titanium and two different titanium oxides, TiO and TiO 2 , were accurately produced by DC magnetron sputtering using the reactive gas pulsing process. These multilayers were sputtered onto Al 2 O 3 sapphire to avoid substrate compound diffusion during flash annealing (ranging from 350 °C to 550 °C). Structure and composition of these periodic TiO 2 /TiO/Ti stacks were investigated by X-ray diffraction, X-ray photoemission spectroscopy and transmission electronic microscopy techniques. Two crystalline phases α-Ti and fcc-TiO were identified in the metallic-rich sub-layers whereas the oxygen-rich ones were composed of a mixture…
Anomalies of dielectric properties and conductivity in single domain LiNbO3:Zn crystals
2016
ABSTRACTA study of the temperature dependence of dielectric constant, conductivity, and piezoelectric modulus in the single-domain state of LiNbO3 crystals modified by Zn admixture at threshold concentration is reported. Unipolarity of the LiNbO3:Zn crystals is observed to increase after treatment of brand-new samples by high-temperature electro-diffusion annealing and by subsequent high-temperature annealing of short-circuited samples. The observed effects are explained as a result of meta-stable residual domains collapsing at high temperature the collapse being assisted by disintegration of charged clusters stabilizing domain walls. The rise of unipolarity is accompanied by anomalies on t…
Half-Heusler superlattices as model systems for nanostructured thermoelectrics
2015
The efficiency of thermoelectric materials is directly related to the dimensionless figure of merit , therefore, one of the means to improve ZT is to reduce the thermal conductivity. Our research focuses on half-Heusler superlattices (SLs) and the relationship between the SL period and the thermal conductivity. The cross-plane thermal conductivity of DC-sputtered TiNiSn/HfNiSn SLs was measured by the 3 method at room temperature and a clear reduction of was achieved for all SL periods, in particular for periods smaller than 20 nm. Moreover, the thermal conductivities of TiNiSn and HfNiSn single films display reduced values compared to the literature data for bulk materials. Furthermore, we …
Hole localization in thermoelectric half-Heusler (Zr0.5Hf0.5)Co(Sb1−xSn ) thin films
2019
Abstract The (Ti, Zr, Hf)Co(Sb 1 − x Snx) material class has recently come into focus as an attractive p-type high-temperature thermoelectric material. This study experimentally demonstrates that homogeneous, highly textured (Zr0.5Hf0.5)Co(Sb 1 − x Snx) thin films can be grown on single crystalline MgO. By varying the sputter power, samples with both positive and negative Seebeck coefficient can be grown. The underlying reason for the sign change is the segregation of Sn nano-inclusions, which lower the effective doping of the half-Heusler matrix. Similarly the Hall constant also switches sign at low temperatures, which is modeled assuming semi-metal behavior and low temperature hole locali…
Impact of Annealing Temperature on Tunneling Magnetoresistance Multilayer Stacks
2020
The effect of annealing temperatures on the tunnel magnetoresistance (TMR) of MgO-based magnetic tunnel junctions (MTJs) has been investigated for annealing between 190 and 370°C. The TMR shows a maximum value of 215% at an annealing temperature of 330°C. A strong sensitivity of the TMR and the exchange bias of the pinned ferromagnetic layers on the annealing temperature are observed. Depending on sensor application requirements, the MTJ can be optimized either for stability and pinning strength or for a high TMR signal by choosing the appropriate annealing temperature. The switching mechanism of the ferromagnetic layers in the MTJ and the influence of the annealing on the layer properties,…
Electrical and thermomechanical properties of CVI- Si3N4 porous rice husk ash infiltrated by Al-Mg-Si alloys
2017
Abstract The effect of following processing parameters on the electrical and thermomechanical properties of Al/Si3N4 deposited silica composites was investigated using the Taguchi method and analysis of variance (ANOVA): infiltration temperature and time, atmosphere, effect of Si3N4 coating, porosity content in the preforms, and magnesium content in the alloy. The contributions of each of the parameters to modulus of elasticity, electrical resistivity, coefficient of thermal expansion (CTE), and thermal diffusivity of the resulting composites were determined. The maximum modulus of elasticity and electrical resistivity of obtained composites were 265 GPa, and 1.37 × 10−3 Ω m, respectively. …
Microstructure and electric properties of low-pressure plasma sprayed β-FeSi 2 based coatings
2017
Abstract Thermoelectric material β-FeSi 2 based coating was fabricated by the technique low-pressure plasma spray (LPPS) on the Al 2 O 3 substrate from different alloy powders. During the process LPPS, the phase transformation had occurred through the peritectoid, eutectoid reaction and their inverse reaction. The grain size of the as-sprayed β-FeSi 2 doped Co coatings was reduced comparing with the original feedstock powders, which implied the thermal conductivity could effectively decreased by the LPPS process. The room temperature electrical conductivity showed metal and semiconductor properties on the as-sprayed and annealed coatings. This method and the results could solve the problems…
Low-temperature luminescence of CdI2 under synchrotron radiation
2020
Synchrotron radiation is applied to study visible and UV luminescence spectra and their excitation spectra of undoped as well as In and Sb doped cadmium iodide crystals at 10 K. The origin of principal luminescence bands and the role of impurities in the formation of emission centers are discussed. The luminescence properties have been explained based on the electronic structure of CdI2 crystals.
The interdependence of structural and electrical properties in TiO2/TiO/Ti periodic multilayers
2013
International audience; Multilayered structures with 14-50 nm periods composed of titanium and two different titanium oxides, TiO and TiO2, were accurately produced by DC magnetron sputtering using the reactive gas pulsing process. The structure and composition of these periodic TiO2/TiO/Ti stacks were investigated by X-ray diffraction and transmission electronic microscopy techniques. Two crystalline phases, hexagonal close packed Ti and face centred cubic TiO, were identified in the metallic-rich sub-layers, whereas the oxygen-rich ones comprised a mixture of amorphous TiO2 and rutile phase. DC electrical resistivity rho measured for temperatures ranging from 300 to 500 K exhibited a meta…