Search results for "Conductor"

showing 10 items of 1270 documents

Three-Dimensional Superconducting Nanohelices Grown by He

2019

Novel schemes based on the design of complex three-dimensional (3D) nanoscale architectures are required for the development of the next generation of advanced electronic components. He+ focused-ion-beam (FIB) microscopy in combination with a precursor gas allows one to fabricate 3D nanostructures with an extreme resolution and a considerably higher aspect ratio than FIB-based methods, such as Ga+ FIB-induced deposition, or other additive manufacturing technologies. In this work, we report the fabrication of 3D tungsten carbide nanohelices with on-demand geometries via controlling key deposition parameters. Our results show the smallest and highest-densely packed nanohelix ever fabricated s…

nanosuperconductorsLetterphase slipsthree-dimensional nanoprintingHelium ion microscopeGinzburg−Landau equationfocused-ion-beam-induced depositionNano letters
researchProduct

Characterisation of single semiconductor nanowires by non-destructive spectroscopies

2015

Los nanohilos semiconductores (NWs, de su nombre inglés, nanowires) tienen una amplia gama de aplicaciones en el campo de la optoelectrónica (emisores de luz y diodos láser), nano-electrónica (circuitos lógicos y transistores de efecto de campo), y detección y producción de energía (células solares). En términos generales, los NWs pueden ser descritos como nanoestructuras de forma alargada con diámetros que van típicamente de decenas a cientos de nanómetros, y con longitudes que oscilan desde pocas hasta las decenas de micras. Dicha morfología ofrece dos ventajas principales en comparación con las capas: su alta relación superficie-volumen y su mayor calidad cristalina, ambas beneficiosas p…

nanowiresSERS:FÍSICA [UNESCO]UNESCO::FÍSICAphotoluminescencesemiconductorx-ray spectroscopyraman scatteringselective area growthcore-shell nanowiresgold nanorods
researchProduct

Optical Properties of III-V Nanowires and Their Application for Charge Transport and Single-Photon Emission

2012

This work covers the optical characterization of III-V semiconductor nanowires and their application for charge transport and for single-photon emission. InAs nanowires have been investigated by Raman scattering and PL spectroscopy. The possibility to grow nanowires with a crystal structure different from its bulk counterpart has aroused a lot of interest in their optical and electronic properties. Here, the optical phonon modes of wurtzite InAs nanowires have been studied by polarized Raman scattering. For the first time, Raman measurements on a single InAs nanowire have revealed the A1(TO) and E2h optical phonon modes of the wurtzite structure. Additional resonant Raman scattering experim…

nanowires; photoluminescence; InAs; GaAs; Raman; SAW; surface acoustic waves; charge transportUNESCO::FÍSICA::Física del estado sólido ::SemiconductoresSAWGaAsPhysics::Opticssurface acoustic wavesCondensed Matter::Mesoscopic Systems and Quantum Hall Effectcharge transportCondensed Matter::Materials SciencenanowiresInAs:FÍSICA::Física del estado sólido ::Semiconductores [UNESCO]photoluminescenceRaman
researchProduct

Latest Developments and Results of Radiation Tolerance CMOS Sensors with Small Collection Electrodes

2020

The development of radiation hard Depleted Monolithic Active Pixel Sensors (DMAPS) targets the replacement of hybrid pixel detectors to meet radiation hardness requirements of at least 1.5e16 1 MeV neq/cm2 for the HL-LHC and beyond. DMAPS were designed and tested in the TJ180 nm TowerJazz CMOS imaging technology with small electrodes pixel designs. This technology reduces costs and provides granularity of 36.4x36.4 um2 with low power operation (1 uW/pixel), low noise of ENC < 20 e-, a small collection electrode (3 um) and fast signal response within 25 ns bunch crossing. This contribution will present the latest developments after the MALTA and Mini-MALTA sensors. It will illustrate the imp…

noiseParticle tracking detectors ; Radiation-hard detectors ; Electronic detector readout concepts ; CMOS sensors ; Monolithic active pixel sensorsMaterials science010308 nuclear & particles physicsbusiness.industryintegrated circuitelectrode01 natural sciencesCMOSRadiation toleranceefficiency0103 physical sciencesElectrodeHardware_INTEGRATEDCIRCUITSelectronics: readoutOptoelectronicssemiconductor detector[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniquescontrol system010306 general physicsbusiness
researchProduct

Phase-delayed laser diode array allows ultrasonic guided wave mode selection and tuning

2013

Selecting and tuning modes are useful in ultrasonic guided wave non-destructive testing (NDT) since certain modes at various center frequencies are sensitive to specific types of defects. Ideally one should be able to select both the mode and the center frequency of the launched waves. We demonstrated that an affordable laser diode array can selectively launch either the S0 or A0 ultrasonic wave mode at a chosen center frequency into a polymer plate. A fiber-coupled diode array (4 elements) illuminated a 2 mm thick acrylic plate. A predetermined time delay matching the selected mode and frequency was employed between the output of the elements. The generated ultrasound was detected by a 215…

nondestructive testingplates (structures)delayssemiconductor laser arraysacoustic receiversoptical fibre couplersacoustic waveguidesultrasonic wavespolymeeritlaser modeslaser tuning
researchProduct

Signal processing in photonic crystals and nanostructures

2006

International audience; Optical devices employing photonic crystals and novel nanostructure materials may exhibit useful properties for applications to all-optical signal processing. In this work we analyze as a first example four-wave mixing of polarized beams in photonic crystal fibers. We show that by properly tuning the pump wavelength and the linear dispersion properties of the fiber one may obtain broadband parametric amplification and frequency conversion. Next we consider the in-line periodic amplification of short optical pulses by means of quantum-dot semiconductor optical amplifiers. We show by numerical simulations that pattern-free amplification of a 40 Gbit/s soliton signal at…

optical fibers[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]instabilities and solitonsinstabilities and solitons; optical communications; optical fibersPhysics::Opticsoptical communications[PHYS.PHYS.PHYS-AO-PH] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]parametric amplifierssemiconductor optical amplifiersoptical propagation in nonlinear media
researchProduct

Atomic layer deposition of AlN from AlCl3 using NH3 and Ar/NH3 plasma

2018

The atomic layer deposition (ALD) of AlN from AlCl3 was investigated using a thermal process with NH3 and a plasma-enhanced (PE)ALD process with Ar/NH3 plasma. The growth was limited in the thermal process by the low reactivity of NH3, and impractically long pulses were required to reach saturation. Despite the plasma activation, the growth per cycle in the PEALD process was lower than that in the thermal process (0.4A ° vs 0.7A ° ). However, the plasma process resulted in a lower concentration of impurities in the films compared to the thermal process. Both the thermal and plasma processes yielded crystalline films; however, the degree of crystallinity was higher in the plasma process. The…

optical propertiescrystal structureMaterials scienceSiliconta221Analytical chemistrychemistry.chemical_element02 engineering and technologyoptiset ominaisuudet01 natural sciencespiezoelectric filmsAtomic layer depositionCrystallinityImpurity0103 physical sciencesWaferta216010302 applied physicsta114Plasma activationWide-bandgap semiconductorSurfaces and InterfacesPlasmaatomikerroskasvatus021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurfaces Coatings and Filmsdermatologychemistryatomic layer deposition0210 nano-technologyJournal of Vacuum Science and Technology A
researchProduct

Unravelling the Intertwined Atomic and Bulk Nature of Localised Excitons by Attosecond Spectroscopy

2021

The electro-optical properties of most semiconductors and insulators of technological interest are dominated by the presence of electron-hole quasi-particles, called excitons. The manipulation of excitons in dielectrics has recently received great attention, with possible applications in different fields including optoelectronics and photonics. Here, we apply attosecond transient reflection spectroscopy in a sequential two-foci geometry and observe sub-femtosecond dynamics of a core-level exciton in bulk MgF2 single crystals. Furthermore, we access absolute phase delays, which allow for an unambiguous comparison with theoretical calculations. Our results show that excitons surprisingly exhi…

optoelectronicsAttosecondphotonicsAttosecond dynamicsGeneral Physics and AstronomyPhysics::Optics02 engineering and technologysemiconductorsTransient reflectivity01 natural sciencesSettore FIS/03 - Fisica Della MateriaUltrafast photonicsPhysicsMultidisciplinaryCondensed matter physicsQCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyfemtosecond optical Stark effectdielectricsStark effectFemtosecondsymbols0210 nano-technologyPhysics - OpticsElectronic properties and materialsattosecondexcitonsScienceExcitonFOS: Physical sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyCondensed Matter::Materials Sciencesymbols.namesakeMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesPhysics::Atomic and Molecular Clusters010306 general physicsSpectroscopyCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryGeneral ChemistryCore excitonselectro-optical propertiesSemiconductorPhotonicsbusinessUltrashort pulseelectron-hole quasi-particlesOptics (physics.optics)
researchProduct

New charge transfer salts of two organic π-donors of the tetrathiafulvalene type with the paramagnetic [Cr(NCS)6]3- anion

2003

cited By 9; International audience; The electrochemical combination of the paramagnetic anion [Cr(NCS)6]3- with the organic π-donors bis(ethylenedithio)tetrathiafulvalene (ET) and 4,5-bis(2-hydroxyethylthio) -4′,5′-ethylenedithiotetrathiafulvalene (DHET-EDTTTF) leads to two new radical cation salts, namely (ET)4 [Cr(NCS 6]·PhCN 1 and (DHET-EDTTTF)2 (NEt4)[Cr(NCS)6] 2. Both have been characterized by X-ray crystallography, magnetic and resistivity measurements. The structure of 1 consists of alternating inorganic layers generated by the anions and organic layers in which the PhCN molecules are inserted; the organic sub-lattice is built up from four different ET units, three of them with a ch…

organic compoundStereochemistryGeneral Chemical EngineeringDimerCrystal structure010402 general chemistry01 natural scienceschromium derivativeParamagnetismchemistry.chemical_compoundtetrathiafulvalene derivativeMolecule[CHIM]Chemical Sciencescontrolled studyradical010405 organic chemistryferromagnetic materialarticleCharge densityGeneral ChemistryanionX ray crystallographysemiconductordimerMagnetic susceptibility0104 chemical sciencescationinorganic compoundCrystallographyRadical ionchemistryelectrochemistrymagnetismchemical structureroom temperatureTetrathiafulvaleneconductanceenergy
researchProduct

Blue Emitting Organic Light Emitting Diodes

2019

Organic light emitting diodes (OLEDs) [1] can be fabricated on a range of materials such as glass, silicon or flexible plastic substrates. This can be exploited for the realization of integrated OLED-based fluorescence chemical sensors [2] and microfluidic systems [3] for application in areas such as biotechnology, life sciences, pharmaceuticals, public health and defense. These devices hold promises to be cost effective, ultra-compact (including the possibility to be fabricated into large bidimensional arrays), and capable to handle smaller sample volumes in order to achieve high throughput. Blue light is advantageous because it is strongly absorbed by most sensing molecules attached to bi…

organic materials and devices organic semiconductors organic ligth emitting diodesSettore ING-INF/01 - Elettronica
researchProduct