Search results for "Conformal map"
showing 10 items of 125 documents
Planar Mappings of Finite Distortion
2010
We review recent results on planar mappings of finite distortion. This class of mappings contains all analytic functions and quasiconformal mappings.
A quasiconformal composition problem for the Q-spaces
2017
Given a quasiconformal mapping $f:\mathbb R^n\to\mathbb R^n$ with $n\ge2$, we show that (un-)boundedness of the composition operator ${\bf C}_f$ on the spaces $Q_{\alpha}(\mathbb R^n)$ depends on the index $\alpha$ and the degeneracy set of the Jacobian $J_f$. We establish sharp results in terms of the index $\alpha$ and the local/global self-similar Minkowski dimension of the degeneracy set of $J_f$. This gives a solution to [Problem 8.4, 3] and also reveals a completely new phenomenon, which is totally different from the known results for Sobolev, BMO, Triebel-Lizorkin and Besov spaces. Consequently, Tukia-V\"ais\"al\"a's quasiconformal extension $f:\mathbb R^n\to\mathbb R^n$ of an arbitr…
Boundary Hölder Continuity and Quasiconformal Mappings
1991
Quasiconformal maps in metric spaces with controlled geometry
1998
This paper develops the foundations of the theory of quasiconformal maps in metric spaces that satisfy certain bounds on their mass and geometry. The principal message is that such a theory is both relevant and viable. The first main issue is the problem of definition, which we next describe. Quasiconformal maps are commonly understood as homeomorphisms that distort the shape of infinitesimal balls by a uniformly bounded amount. This requirement makes sense in every metric space. Given a homeomorphism f from a metric space X to a metric space Y , then for x∈X and r>0 set
Asymptotic values and hölder continuity of quasiconformal mappings
1987
Cone conditions and quasiconformal mappings
1988
Let f be a quasiconformal mapping of the open unit ball B n = {x ∈ R n : | x | < l× in euclidean n-space R n onto a bounded domain D in that space. For dimension n= 2 the literature of geometric function theory abounds in results that correlate distinctive geometric properties of the domain D with special behavior, be it qualitative or quantitative, on the part of f or its inverse. There is a more modest, albeit growing, body of work that attempts to duplicate in dimensions three and above, where far fewer analytical tools are at a researcher’s disposal, some of the successes achieved in the plane along such lines. In this paper we contribute to that higher dimensional theory some observati…
Distortion of quasiconformal maps in terms of the quasihyperbolic metric
2013
Abstract We extend a theorem of Gehring and Osgood from 1979–relating to the distortion of the quasihyperbolic metric by a quasiconformal mapping between Euclidean domains–to the setting of metric measure spaces of Q -bounded geometry. When the underlying target space is bounded, we require that the boundary of the image has at least two points. We show that even in the manifold setting, this additional assumption is necessary.
Quasiconformal mappings and global integrability of the derivative
1991
Quasiextremal distance domains and extension of quasiconformal mappings
1985
Quasihyperbolic boundary conditions and capacity: Hölder continuity of quasiconformal mappings
2001
We prove that quasiconformal maps onto domains which satisfy a suitable growth condition on the quasihyperbolic metric are uniformly continuous when the source domain is equipped with the internal metric. The obtained modulus of continuity and the growth assumption on the quasihyperbolic metric are shown to be essentially sharp. As a tool, we prove a new capacity estimate.