Search results for "Conjugacy class"
showing 10 items of 50 documents
A submatrix of the character table
2000
Let G be a finite group and let p be a prime number. We consider the Submatrix of the character table of G whose rows are indexed by the characters in blocks of maximal defect, and whose columns are indexed by the conjugacy classes of P′-size. We prove that this matrix has maximum rank.
On the number of conjugacy classes of zeros of characters
2004
Letm be a fixed non-negative integer. In this work we try to answer the following question: What can be said about a (finite) groupG if all of its irreducible (complex) characters vanish on at mostm conjugacy classes? The classical result of Burnside about zeros of characters says thatG is abelian ifm=0, so it is reasonable to expect that the structure ofG will somehow reflect the fact that the irreducible characters vanish on a bounded number of classes. The same question can also be posed under the weaker hypothesis thatsome irreducible character ofG hasm classes of zeros. For nilpotent groups we shall prove that the order is bounded by a function ofm in the first case but only the derive…
Squaring a conjugacy class and cosets of normal subgroups
2015
A reduction theorem for perfect locally finite minimal non-FC groups
1999
A group G is said to be a minimal non-FC group, if G contains an infinite conjugacy class, while every proper subgroup of G merely has finite conjugacy classes. The structure of imperfect minimal non-FC groups is quite well-understood. These groups are in particular locally finite. At the other end of the spectrum, a perfect locally finite minimal non-FC group must be a p-group. And it has been an open question for quite a while now, whether such groups exist or not.
Rational irreducible characters and rational conjugacy classes in finite groups
2007
We prove that a finite group G G has two rational-valued irreducible characters if and only if it has two rational conjugacy classes, and determine the structure of any such group. Along the way we also prove a conjecture of Gow stating that any finite group of even order has a non-trivial rational-valued irreducible character of odd degree.
2-Groups with few rational conjugacy classes
2011
Abstract In this paper we prove the following conjecture of G. Navarro: if G is a finite 2-group with exactly 5 rational conjugacy classes, then G is dihedral, semidihedral or generalized quaternion. We also characterize the 2-groups with 4 rational classes.
Some problems about products of conjugacy classes in finite groups
2020
[EN] We summarize several results about non-simplicity, solvability and normal structure of finite groups related to the number of conjugacy classes appearing in the product or the power of conjugacy classes. We also collect some problems that have only been partially solved.
?-constraint with respect to a Fitting class
1986
Character Tables and Sylow Subgroups Revisited
2018
Suppose that G is a finite group. A classical and difficult problem is to determine how much the character table knows about the local structure of G and vice versa.
Finite 2-groups with odd number of conjugacy classes
2016
In this paper we consider finite 2-groups with odd number of real conjugacy classes. On one hand we show that if $k$ is an odd natural number less than 24, then there are only finitely many finite 2-groups with exactly $k$ real conjugacy classes. On the other hand we construct infinitely many finite 2-groups with exactly 25 real conjugacy classes. Both resuls are proven using pro-$p$ techniques and, in particular, we use the Kneser classification of semi-simple $p$-adic algebraic groups.