Search results for "Conjugacy class"

showing 10 items of 50 documents

Groups with soluble minimax conjugate classes of subgroups

2008

A classical result of Neumann characterizes the groups in which each subgroup has finitely many conjugates only as central-by-finite groups. If $\mathfrak{X}$ is a class of groups, a group $G$ is said to have $\mathfrak{X}$-conjugate classes of subgroups if $G/core_G(N_G(H)) \in \mathfrak{X}$ for each subgroup $H$ of $G$. Here we study groups which have soluble minimax conjugate classes of subgroups, giving a description in terms of $G/Z(G)$. We also characterize $FC$-groups which have soluble minimax conjugate classes of subgroups.

Mathematics::Group TheoryT57-57.97Conjugacy classeSettore MAT/02 - AlgebraApplied mathematics. Quantitative methodsfc-groupspolycyclic groupssoluble minimax groupsSettore MAT/03 - Geometriasoluble minimax groups $FC$-groups polycyclic groups.conjugacy classes
researchProduct

On $MC$-hypercentral triply factorized groups

2007

A group G is called triply factorized in the product of two subgroups A, B and a normal subgroup K of G ,i fG = AB = AK = BK. This decomposition of G has been studied by several authors, investigating on those properties which can be carried from A, B and K to G .I t is known that if A, B and K are FC-groups and K has restrictions on the rank, then G is again an FC-group. The present paper extends this result to wider classes of FC-groups. Mathematics Subject Classification: 20F24; 20F14

Normal subgroupCombinatoricsSettore MAT/02 - Algebrageneralized $FC$-groupsMathematics Subject ClassificationGroup (mathematics)Product (mathematics)Rank (graph theory)triply factorized groupSettore MAT/03 - GeometriaGroups with soluble minimax conjugacy classeMathematics
researchProduct

p-Blocks relative to a character of a normal subgroup

2018

Abstract Let G be a finite group, let N ◃ G , and let θ ∈ Irr ( N ) be a G-invariant character. We fix a prime p, and we introduce a canonical partition of Irr ( G | θ ) relative to p. We call each member B θ of this partition a θ-block, and to each θ-block B θ we naturally associate a conjugacy class of p-subgroups of G / N , which we call the θ-defect groups of B θ . If N is trivial, then the θ-blocks are the Brauer p-blocks. Using θ-blocks, we can unify the Gluck–Wolf–Navarro–Tiep theorem and Brauer's Height Zero conjecture in a single statement, which, after work of B. Sambale, turns out to be equivalent to the Height Zero conjecture. We also prove that the k ( B ) -conjecture is true i…

Normal subgroupFinite groupAlgebra and Number TheoryConjecture20D 20C15010102 general mathematicsGroup Theory (math.GR)01 natural sciences010101 applied mathematicsCombinatoricsConjugacy classFOS: MathematicsPartition (number theory)Representation Theory (math.RT)0101 mathematicsMathematics - Group TheoryMathematics - Representation TheoryMathematicsJournal of Algebra
researchProduct

Covariant phase space quantization of the Jackiw-Teitelboim model of two-dimensional gravity

1992

Abstract On the basis of the covariant phase space formulation of field theory we analyze the Jackiw-Teitelboim model of two-dimensional gravity on a cylinder. We compute explicitly the symplectic structure showing that the (reduced) phase space is the cotangent bundle of the space of conjugacy classes of the PSL(2, R ) group. This makes it possible to quantize the theory exactly. The Hilbert space is given by the character functions of the PSL (2, R ) group. As a byproduct, this implies the complete equivalence with the PSL (2, R )-topological gravity model.

PhysicsNuclear and High Energy PhysicsHilbert spaceCotangent spaceSpace (mathematics)symbols.namesakeConjugacy classPhase spaceQuantum mechanicssymbolsCotangent bundlePhase space formulationCovariant transformationMathematical physicsPhysics Letters B
researchProduct

Covariant phase-space quantization of the induced 2D gravity

1993

Abstract We study in a parallel way the induced 2D gravity and the Jackiw-Teitelboimmodel on the cylinder from the viewpoint of the covariant description of canonical formalism. We compute explicity thhe symplectic structure of both theories showing that their (reduced) phase spaces are finite-dimensional cotangent bundles. For the Jackiw-Teitelboim model the base space (configuration space) is the space of conjugacy classes of the PSL(2, R ) group. For the induced 2D gravity, and Λ > 0, the (reduced) phase space consist of two (identical) connected components each one isomorphic to the contangent bundle of the space of hyperbolic conjugacy classes of the PSL (2, R ) group, whereas for Λ R …

PhysicsNuclear and High Energy PhysicsPure mathematicsCanonical quantizationHilbert spaceCotangent spacesymbols.namesakeConjugacy classOperator algebraQuantum mechanicsPhase spacesymbolsCovariant transformationConfiguration spaceGeneral Theoretical PhysicsNuclear Physics B
researchProduct

Sylow subgroups and the number of conjugacy classes of p-elements

2004

Pure mathematicsAlgebra and Number TheoryConjugacy classLocally finite groupSylow theoremsMathematicsJournal of Algebra
researchProduct

On Large Orbits of Actions of Finite Soluble Groups: Applications

2020

The main aim of this survey paper is to present two orbit theorems and to show how to apply them to obtain a result that can be regarded as a significant step towards the solution of Gluck’s conjecture on large character degrees of finite soluble groups. We also show how to apply them to solve questions about intersections of some conjugacy families of subgroups of finite soluble groups.

Pure mathematicsCharacter (mathematics)ConjectureConjugacy classAlgebra over a fieldOrbit (control theory)Mathematics
researchProduct

Rationality and Sylow 2-subgroups

2010

AbstractLet G be a finite group. If G has a cyclic Sylow 2-subgroup, then G has the same number of irreducible rational-valued characters as of rational conjugacy classes. These numbers need not be the same even if G has Klein Sylow 2-subgroups and a normal 2-complement.

Pure mathematicsFinite groupConjugacy classGeneral MathematicsComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONSylow theoremsRationalityMathematicsProceedings of the Edinburgh Mathematical Society
researchProduct

A note on maximal subgroups and conjugacy classes of finite groups

2021

Given a finite group G, two elements are ≡m-related if they lie in exactly the same maximal subgroups of G. This equivalence relation was introduced by P. J. Cameron, A. Lucchini and C. M. Roney-Do...

Pure mathematicsFinite groupMathematics (miscellaneous)Conjugacy classEquivalence relationMathematicsQuaestiones Mathematicae
researchProduct

The set of conjugacy class sizes of a finite group does not determine its solvability

2014

Abstract We find a pair of groups, one solvable and the other non-solvable, with the same set of conjugacy class sizes.

Set (abstract data type)Discrete mathematicsMathematics::Group TheoryFinite groupTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESAlgebra and Number TheoryConjugacy classTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONMathematicsofComputing_DISCRETEMATHEMATICSMathematicsJournal of Algebra
researchProduct