Search results for "Conjugacy class"
showing 10 items of 50 documents
Groups with soluble minimax conjugate classes of subgroups
2008
A classical result of Neumann characterizes the groups in which each subgroup has finitely many conjugates only as central-by-finite groups. If $\mathfrak{X}$ is a class of groups, a group $G$ is said to have $\mathfrak{X}$-conjugate classes of subgroups if $G/core_G(N_G(H)) \in \mathfrak{X}$ for each subgroup $H$ of $G$. Here we study groups which have soluble minimax conjugate classes of subgroups, giving a description in terms of $G/Z(G)$. We also characterize $FC$-groups which have soluble minimax conjugate classes of subgroups.
On $MC$-hypercentral triply factorized groups
2007
A group G is called triply factorized in the product of two subgroups A, B and a normal subgroup K of G ,i fG = AB = AK = BK. This decomposition of G has been studied by several authors, investigating on those properties which can be carried from A, B and K to G .I t is known that if A, B and K are FC-groups and K has restrictions on the rank, then G is again an FC-group. The present paper extends this result to wider classes of FC-groups. Mathematics Subject Classification: 20F24; 20F14
p-Blocks relative to a character of a normal subgroup
2018
Abstract Let G be a finite group, let N ◃ G , and let θ ∈ Irr ( N ) be a G-invariant character. We fix a prime p, and we introduce a canonical partition of Irr ( G | θ ) relative to p. We call each member B θ of this partition a θ-block, and to each θ-block B θ we naturally associate a conjugacy class of p-subgroups of G / N , which we call the θ-defect groups of B θ . If N is trivial, then the θ-blocks are the Brauer p-blocks. Using θ-blocks, we can unify the Gluck–Wolf–Navarro–Tiep theorem and Brauer's Height Zero conjecture in a single statement, which, after work of B. Sambale, turns out to be equivalent to the Height Zero conjecture. We also prove that the k ( B ) -conjecture is true i…
Covariant phase space quantization of the Jackiw-Teitelboim model of two-dimensional gravity
1992
Abstract On the basis of the covariant phase space formulation of field theory we analyze the Jackiw-Teitelboim model of two-dimensional gravity on a cylinder. We compute explicitly the symplectic structure showing that the (reduced) phase space is the cotangent bundle of the space of conjugacy classes of the PSL(2, R ) group. This makes it possible to quantize the theory exactly. The Hilbert space is given by the character functions of the PSL (2, R ) group. As a byproduct, this implies the complete equivalence with the PSL (2, R )-topological gravity model.
Covariant phase-space quantization of the induced 2D gravity
1993
Abstract We study in a parallel way the induced 2D gravity and the Jackiw-Teitelboimmodel on the cylinder from the viewpoint of the covariant description of canonical formalism. We compute explicity thhe symplectic structure of both theories showing that their (reduced) phase spaces are finite-dimensional cotangent bundles. For the Jackiw-Teitelboim model the base space (configuration space) is the space of conjugacy classes of the PSL(2, R ) group. For the induced 2D gravity, and Λ > 0, the (reduced) phase space consist of two (identical) connected components each one isomorphic to the contangent bundle of the space of hyperbolic conjugacy classes of the PSL (2, R ) group, whereas for Λ R …
Sylow subgroups and the number of conjugacy classes of p-elements
2004
On Large Orbits of Actions of Finite Soluble Groups: Applications
2020
The main aim of this survey paper is to present two orbit theorems and to show how to apply them to obtain a result that can be regarded as a significant step towards the solution of Gluck’s conjecture on large character degrees of finite soluble groups. We also show how to apply them to solve questions about intersections of some conjugacy families of subgroups of finite soluble groups.
Rationality and Sylow 2-subgroups
2010
AbstractLet G be a finite group. If G has a cyclic Sylow 2-subgroup, then G has the same number of irreducible rational-valued characters as of rational conjugacy classes. These numbers need not be the same even if G has Klein Sylow 2-subgroups and a normal 2-complement.
A note on maximal subgroups and conjugacy classes of finite groups
2021
Given a finite group G, two elements are ≡m-related if they lie in exactly the same maximal subgroups of G. This equivalence relation was introduced by P. J. Cameron, A. Lucchini and C. M. Roney-Do...
The set of conjugacy class sizes of a finite group does not determine its solvability
2014
Abstract We find a pair of groups, one solvable and the other non-solvable, with the same set of conjugacy class sizes.