Search results for "Control"
showing 10 items of 13168 documents
Modeling Energy Demand Aggregators for Residential Consumers
2013
International audience; Energy demand aggregators are new actors in the energy scenario: they gather a group of energy consumers and implement a demand- response paradigm. When the energy provider needs to reduce the current energy demand on the grid, it can pay the energy demand aggregator to reduce the load by turning off some of its consumers loads or postponing their activation. Currently this operation involves only greedy energy consumers like industrial plants. In this paper we want to study the potential of aggregating a large number of small energy consumers like home users as it may happen in smart grids. In particular we want to address the feasibility of such approach by conside…
Robust Mean Field Games with Application to Production of an Exhaustible Resource
2012
International audience; In this paper, we study mean field games under uncertainty. We consider a population of players with individual states driven by a standard Brownian motion and a disturbance term. The contribution is three-fold: First, we establish a mean field system for such robust games. Second, we apply the methodology to an exhaustible resource production. Third, we show that the dimension of the mean field system can be significantly reduced by considering a functional of the first moment of the mean field process.
Opinion dynamics in social networks through mean field games
2016
Emulation, mimicry, and herding behaviors are phenomena that are observed when multiple social groups interact. To study such phenomena, we consider in this paper a large population of homogeneous social networks. Each such network is characterized by a vector state, a vector-valued controlled input, and a vector-valued exogenous disturbance. The controlled input of each network aims to align its state to the mean distribution of other networks' states in spite of the actions of the disturbance. One of the contributions of this paper is a detailed analysis of the resulting mean-field game for the cases of both polytopic and $mathcal L_2$ bounds on controls and disturbances. A second contrib…
New delay-dependent stability of Markovian jump neutral stochastic systems with general unknown transition rates
2015
This paper investigates the delay-dependent stability problem for neutral Markovian jump systems with generally unknown transition rates GUTRs. In this neutral GUTR model, each transition rate is completely unknown or only its estimate value is known. Based on the study of expectations of the stochastic cross-terms containing the integral, a new stability criterion is derived in terms of linear matrix inequalities. In the mathematical derivation process, bounding stochastic cross-terms, model transformation and free-weighting matrix are not employed for less conservatism. Finally, an example is provided to demonstrate the effectiveness of the proposed results.
A Hybrid Control Strategy for Quadratic Boost Converters with Inductor Currents Estimation
2020
International audience; This paper deals with a control strategy for a DC-DC quadratic boost converter. In particular, a hybrid control scheme is proposed to encompass a control law and an observer for the estimation of the system states, based only on the measurements of the input and output voltages. Differently from classical control methods, where the controller is designed from a small-signal model, here the real model of the system is examined without considering the average values of the discrete variables. Using hybrid dynamical system theory, asymptotic stability of a neighborhood of the equilibrium point is established, ensuring practical stability of the origin, which contains es…
Non-linear active disturbance rejection control for upper limb rehabilitation exoskeleton
2020
Trajectory tracking in upper limb rehabilitation exercises is utilized for repeatability of joint movement to improve the patient’s recovery in the early stages of rehabilitation. In this article, non-linear active disturbance rejection control as a combination of non-linear extended-state observer and non-linear state error feedback is used for the sinusoidal trajectory tracking control of the two-link model of an upper limb rehabilitation exoskeleton. The two links represent movements like flexion/extension for both the shoulder joint and the elbow joint in the sagittal plane. The Euler–Lagrange method was employed to acquire a dynamic model of an upper limb rehabilitation exoskeleton. T…
Care Workers’ Readiness for Robotization : Identifying Psychological and Socio-Demographic Determinants
2020
Successful implementation of robots in welfare services requires that the staff approves of them as a part of daily work tasks. In this study, we identified psychological and socio-demographic determinants associated with readiness for robotization among professional Finnish care-workers. National survey data were collected from professional care workers (n = 3800) between October and November 2016. Random samples were drawn from the member registers of two Finnish trade unions. The data were analyzed with regression models for respondents with and without firsthand experience with robots. The models explained 34–39% of the variance in the readiness for robotization. The readiness was posit…
Dissipativity-Based Small-Gain Theorems for Stochastic Network Systems
2016
In this paper, some small-gain theorems are proposed for stochastic network systems which describe large-scale systems with interconnections, uncertainties and random disturbances. By the aid of conditional dissipativity and showing times of stochastic interval, small-gain conditions proposed for the deterministic case are extended to the stochastic case. When some design parameters are tunable in practice, we invaginate a simpler method to verify small-gain condition by selecting one subsystem as a monitor. Compared with the existing results, the existence-and-uniqueness of solution and ultimate uniform boundedness of input are removed from requirements of input-to-state stability and smal…
Hard material small-batch industrial machining robot
2018
Abstract Hard materials can be cost effectively machined with standard industrial robots by enhancing current state-of-the-art technologies. It is demonstrated that even hard metals with specific robotics-optimised novel hard-metal tools can be machined by standard industrial robots with an improved position-control approach and enhanced compliance-control functions. It also shows that the novel strategies to compensate for elastic robot errors, based on models and advanced control, as well as the utilisation of new affordable sensors and human-machine interfaces, can considerably improve the robot performance and applicability of robots in machining tasks. In conjunction with the developme…
A model for torque losses in variable displacement axial piston motors
2018
This paper includes a comparison of earlier presented models for torque losses in hydraulic motors and several proposed models that all rely on data typically available for a system engineer. The new models and the old ones are compared. The new models are all based on a model developed by Jeong 2007 with an expansion that include variable displacement. All of the new models yield very good accuracy down to approximately 50% of maximum displacement and down to approximately 15% of maximum speed. In these operational ranges the deviation in torque is less than 1%. The main purpose of the new models is to facilitate simulations of hydraulically actuated winches with a balance between accuracy…