Search results for "Copper"

showing 10 items of 3029 documents

A compositional analysis by energy dispersive X-ray fluorescence of Iberian copper-alloy votive figurines from southern Spain (fourth-third centuries…

2018

010506 paleontologyMaterials science060102 archaeologyMetallurgyCopper alloyX-ray fluorescence0601 history and archaeology06 humanities and the arts01 natural sciencesSpectroscopy0105 earth and related environmental sciencesX-Ray Spectrometry
researchProduct

Genomic transformation and social organization during the Copper Age–Bronze Age transition in southern Iberia

2021

Description

010506 paleontologySouthern IberiaArgarArqueologiaBiología CelularCopper Age01 natural sciencesSocial and Interdisciplinary Sciences03 medical and health sciencesBronze AgePolitical scienceGeneticsread alignmentSocial organizationancient genomes030304 developmental biology0105 earth and related environmental sciences0303 health sciencesMultidisciplinaryEuropean researchskin color predictionancestrySciAdv r-articlesHuman GeneticsPrehistoriaChalcolithicsequencestepperevealAnthropologyprehistoryadmixtureChristian ministryhistoryBronce AgeHumanitiesResearch Article
researchProduct

Deregulated High Affinity Copper Transport Alters Iron Homeostasis inArabidopsis

2020

The present work describes the effects on iron homeostasis when copper transport was deregulated in Arabidopsis thaliana by overexpressing high affinity copper transporters COPT1 and COPT3 (COPTOE). A genome-wide analysis conducted on COPT1OE plants, highlighted that iron homeostasis gene expression was affected under both copper deficiency and excess. Among the altered genes were those encoding the iron uptake machinery and their transcriptional regulators. Subsequently, COPTOE seedlings contained less iron and were more sensitive than controls to iron deficiency. The deregulation of copper (I) uptake hindered the transcriptional activation of the subgroup Ib of basic helix-loop-helix (bHL…

0106 biological sciences0301 basic medicineArabidopsis thalianaPlant Sciencelcsh:Plant culture01 natural sciencesHigh affinity copper importer 103 medical and health sciencesIron homeostasisCopper uptakeArabidopsisIron homeostasisBIOQUIMICA Y BIOLOGIA MOLECULARmedia_common.cataloged_instanceArabidopsis thalianalcsh:SB1-1110European unionmedia_commonbiologyChemistryHigh affinity copper transportbiology.organism_classificationCell biologyMetal mobilization030104 developmental biologyChristian ministryMetal mobilizationMetal interactions010606 plant biology & botany
researchProduct

Interaction Between ABA Signaling and Copper Homeostasis inArabidopsis thaliana

2016

ABA is involved in plant responses to non-optimal environmental conditions, including nutrient availability. Since copper (Cu) is a very important micronutrient, unraveling how ABA affects Cu uptake and distribution is relevant to ensure adequate Cu nutrition in plants subjected to stress conditions. Inversely, knowledge about how the plant nutritional status can interfere with ABA biosynthesis and signaling mechanisms is necessary to optimize stress tolerance in horticultural crops. Here the reciprocal influence between ABA and Cu content was addressed by using knockout mutants and overexpressing transgenic plants of high affinity plasma membrane Cu transporters (pmCOPT) with altered Cu up…

0106 biological sciences0301 basic medicineBiologiaTranscription GeneticPhysiologyMutantArabidopsisPlant ScienceGenetically modified cropsSodium ChlorideGenes PlantPlant Roots01 natural sciencesGene Knockout Techniques03 medical and health scienceschemistry.chemical_compoundGene Expression Regulation PlantStress PhysiologicalArabidopsisHomeostasisArabidopsis thalianaPlantes Cèl·lules i teixitsAbscisic acidTranscription factorbiologyArabidopsis ProteinsMembrane transport proteinorganic chemicalsfungiMembrane Transport Proteinsfood and beveragesCell BiologyGeneral Medicinebiology.organism_classificationCell biologyOxidative StressPhenotype030104 developmental biologychemistryMutationbiology.proteinSignal transductionCopperAbscisic AcidSignal Transduction010606 plant biology & botanyPlant and Cell Physiology
researchProduct

Characterization of the Copper Transporters from Lotus spp. and Their Involvement under Flooding Conditions

2019

Forage legumes are an important livestock nutritional resource, which includes essential metals, such as copper. Particularly, the high prevalence of hypocuprosis causes important economic losses to Argentinian cattle agrosystems. Copper deficiency in cattle is partially due to its low content in forage produced by natural grassland, and is exacerbated by flooding conditions. Previous results indicated that incorporation of Lotus spp. into natural grassland increases forage nutritional quality, including higher copper levels. However, the biological processes and molecular mechanisms involved in copper uptake by Lotus spp. remain poorly understood. Here, we identify four genes that encode p…

0106 biological sciences0301 basic medicineBiologíalegumesLotusCOPPERFLOODING01 natural scienceslcsh:ChemistryCopper transportersProtein-fragment complementation assayCation Transport Proteinslcsh:QH301-705.5SpectroscopyPlant Proteinsbiologyfood and beveragesGeneral MedicinePhenotypeComputer Science ApplicationsLEGUMESSaccharomyces cerevisiaechemistry.chemical_elementCatalysisArticleInorganic Chemistry03 medical and health sciencesfloodingStress PhysiologicalFORAGEBotanymedicineCiencias AgrariasPhysical and Theoretical ChemistryMolecular BiologyGeneOrganic Chemistryfungiforagebiology.organism_classificationmedicine.disease//purl.org/becyt/ford/4.5 [https]CopperTRANSPORTERScopper transportersYeastFloods030104 developmental biologychemistrylcsh:Biology (General)lcsh:QD1-999CIENCIAS AGRÍCOLASLotusOtras Ciencias AgrícolasCopper deficiency//purl.org/becyt/ford/4 [https]Copper010606 plant biology & botanyInternational Journal of Molecular Sciences
researchProduct

Daily rhythmicity of high affinity copper transport

2016

A differential demand for copper (Cu) of essential cupro-proteins that act within the mitochondrial and chloroplastal electronic transport chains occurs along the daily light/dark cycles. This requires a fine-tuned spatiotemporal regulation of Cu delivery, becoming especially relevant under non-optimal growth conditions. When scarce, Cu is imported through plasma membrane-bound high affinity Cu transporters (COPTs) whose coding genes are transcriptionally induced by the SPL7 transcription factor. Temporal homeostatic mechanisms are evidenced by the presence of multiple light- and clock-responsive regulatory cis elements in the promoters of both SPL7 and its COPT targets. A model is presente…

0106 biological sciences0301 basic medicineCircadian clockArabidopsisComputingMilieux_LEGALASPECTSOFCOMPUTINGPlant Science01 natural sciencesElectron Transport03 medical and health sciencesGene Expression Regulation PlantArabidopsisBotanyRNA MessengerSLC31 ProteinsPromoter Regions GeneticCation Transport ProteinsTranscription factorbiologyArabidopsis ProteinsGiganteaTransporterPromoterbiology.organism_classificationElectron transport chainArticle AddendumCircadian RhythmTransport proteinDNA-Binding Proteins030104 developmental biologyBiophysicsCopperMetabolic Networks and PathwaysTranscription Factors010606 plant biology & botanyPlant Signaling & Behavior
researchProduct

Responsiveness of metallothionein and hemocyanin genes to cadmium and copper exposure in the garden snail Cornu aspersum.

2020

Abstract Terrestrial gastropods express metal‐selective metallothioneins (MTs) by which they handle metal ions such as Zn2+, Cd2+, and Cu+/Cu2+ through separate metabolic pathways. At the same time, they depend on the availability of sufficient amounts of Cu as an essential constituent of their respiratory protein, hemocyanin (Hc). It was, therefore, suggested that in snails Cu‐dependent MT and Hc pathways might be metabolically connected. In fact, the Cu‐specific snail MT (CuMT) is exclusively expressed in rhogocytes, a particular molluscan cell type present in the hemocoel and connective tissues. Snail rhogocytes are also the sites of Hc synthesis. In the present study, possible interacti…

0106 biological sciences0301 basic medicineDNA ComplementaryPhysiologymedicine.medical_treatmentSnailsGastropodaSnailBiology010603 evolutionary biology01 natural sciences03 medical and health sciencesstressbiology.animalGastropodaparasitic diseasesGeneticsmedicineMetallothioneinAnimalsMolecular BiologyEcology Evolution Behavior and SystematicsMetal metabolismBase Sequencefungimetal metabolismMidgutHemocyaninbiology.organism_classificationResearch PapersRespiratory protein030104 developmental biologybioaccumulationBiochemistryGene Expression RegulationMetalsHemocyaninsAnimal Science and ZoologyMetallothioneinCornu aspersumCopperrespirationCadmiumResearch PaperJournal of experimental zoology. Part A, Ecological and integrative physiology
researchProduct

Insect repellent and chemical agronomic treatments to reduce seed numberin'Afourer'mandarin. Effect on yield and fruit diameter

2019

Abstract Obtaining citrus fruits without seeds is a recurrent objective for farmers as it is one of the most valued characteristics, especially in mandarins. ‘Afourer’ tangor is a highly valuable well-established mandarin, and a high percentage of seeded fruits are produced under cross-pollination conditions. Several agronomic techniques have been suggested to control presence of seeds, such as covering with nets and copper sulfate (CuSO4) and gibberellic acid (GA3) treatments. Natural bee repellents are also proposed to reduce the number of seeds per fruit. In this study, we aimed to compare the effect of several agronomic treatments to reduce the seed number in 'Afourer' mandarin. To this…

0106 biological sciences0301 basic medicineInsecticidesAfourerBOTANICACitrus fruitsAgricultura ExperimentacióHorticulture01 natural sciencesMandarin Chinese03 medical and health scienceschemistry.chemical_compoundYield (wine)Copper sulfateGibberellic acidGibberellic acidTangorbiologySeed numberWeak relationshipInsect repellentfood and beveragesCopper sulfatebiology.organism_classificationlanguage.human_languageHorticultureCapsicum annuumFruita030104 developmental biologychemistrylanguageSeed reductionNet-covered treesInsect repellentFruit diameter010606 plant biology & botany
researchProduct

Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor

2018

[EN] Copper is an essential element in plants. When scarce, copper is acquired from extracellular environment or remobilized from intracellular sites, through members of the high affinity copper transporters family COPT located at the plasma membrane and internal membrane, respectively. Here, we show that COPT3 is an intracellular copper transporter, located at a compartment of the secretory pathway, that is mainly expressed in pollen grains and vascular bundles. Contrary to the COPT1 plasma membrane member, the expression of the internal COPT3 membrane transporter was higher at 12 h than at 0 h of a neutral photoperiod day under copper deficiency. The screening of a library of conditionall…

0106 biological sciences0301 basic medicineMutantchemistry.chemical_elementPlant Sciencelcsh:Plant culture01 natural sciencesTCP1603 medical and health sciencesTranscriptional regulationGene expressionBIOQUIMICA Y BIOLOGIA MOLECULARExtracellularmedicinelcsh:SB1-1110COPT3transcriptional regulationheavy metalsTranscription factorSecretory pathwayOriginal ResearchCopper transportmedicine.diseaseCopperCell biology030104 developmental biologyHeavy metalschemistrycopper transportCopper deficiencyIntracellular010606 plant biology & botanyFrontiers in Plant Science
researchProduct

The Altered Expression of microRNA408 Influences the Arabidopsis Response to Iron Deficiency

2019

MicroRNAs contribute to the adaptation of plants to varying environmental conditions by affecting systemic mineral nutrient homeostasis. Copper and iron deficiencies antagonistically control the expression of Arabidopsis thaliana microRNA408 (miR408), which post-transcriptionally regulates laccase-like multicopper oxidase family members LAC3, LAC12, and LAC13. In this work, we used miR408 T-DNA insertion mutants (408-KO1 and 408-KO2) and a previously characterized transgenic line overexpressing miR408 (35S:408-14) to explore how miR408 influences copper- and iron-dependent metabolism. We observed that the altered expression of miR408 diminished plant performance and the activation of the ir…

0106 biological sciences0301 basic medicineTransgeneArabidopsisligninhydrogen peroxidePlant Sciencelcsh:Plant cultureMulticopper oxidase01 natural sciencesLignin03 medical and health sciencesiron deficiencyMicroRNA408ArabidopsisArabidopsis thalianalcsh:SB1-1110Iron deficiency (plant disorder)Original ResearchLaccasebiologyChemistryIron deficiencybiology.organism_classificationVascular bundleHydrogen peroxideCell biologymicroRNA408030104 developmental biologybiology.proteinCeruloplasmin010606 plant biology & botany
researchProduct