Search results for "Cortex"

showing 10 items of 1827 documents

Selective α-synuclein knockdown in monoamine neurons by intranasal oligonucleotide delivery: potential therapy for parkinson’s disease

2018

Progressive neuronal death in brainstem nuclei and widespread accumulation of α-synuclein are neuropathological hallmarks of Parkinson’s disease (PD). Reduction of α-synuclein levels is therefore a potential therapy for PD. However, because α-synuclein is essential for neuronal development and function, α-synuclein elimination would dramatically impact brain function. We previously developed conjugated small interfering RNA (siRNA) sequences that selectively target serotonin (5-HT) or norepinephrine (NE) neurons after intranasal administration. Here, we used this strategy to conjugate inhibitory oligonucleotides, siRNA and antisense oligonucleotide (ASO), with the triple monoamine reuptake …

0301 basic medicineanimal diseasesDopamineOligonucleotidesGene ExpressionPharmacologySynaptic TransmissionPrefrontal cortexMiceDA neurotransmission0302 clinical medicineDrug DiscoveryMonoaminergicNeural PathwaysRNA Small InterferingCells Cultured5-HT neurotransmissionChemistryGene Transfer TechniquesParkinson DiseaseVentral tegmental areaSubstantia Nigramedicine.anatomical_structureCaudate putamenGene Knockdown Techniquesalpha-SynucleinMolecular MedicineRNA InterferenceOriginal ArticleMonoamine reuptake inhibitormedicine.drugSignal TransductionSerotoninSubstantia nigraASO03 medical and health sciencesProsencephalonα-synucleinDopamineIntranasal administrationGeneticsmedicineAnimalsHumansMolecular BiologyAdministration IntranasalPharmacologyPars compactaDopaminergic NeuronsGenetic TherapyCorpus Striatumnervous system diseases030104 developmental biologyMonoamine neurotransmitterGene Expression Regulationnervous systemsiRNAParkinson’s diseaseLocus coeruleus030217 neurology & neurosurgery
researchProduct

A new “sudden fright paradigm” to explore the role of (epi)genetic modulations of the DAT gene in fear-induced avoidance behavior

2020

Alterations in dopamine (DA) reuptake are involved in several psychiatric disorders whose symptoms can be investigated in knock out rats for the DA transporter (DAT-KO). Recent studies evidenced the role of epigenetic DAT modulation in depressive-like behavior. Accordingly, we used heterozygous (HET) rats born from both HET parents (termed MIX-HET), compared to HET rats born from WT-mother and KO-father (MAT-HET), implementing the role of maternal care on DAT modulation. We developed a "sudden fright" paradigm (based on dark-light test) to study reaction to fearful inputs in the DAT-KO, MAT-HET, MIX-HET, and WT groups. Rats could freely explore the whole 3-chambers apparatus; then, they wer…

0301 basic medicineanimal structuresEmotionsStimulus (physiology)Epigenesis GeneticReuptakechoice behavior03 medical and health sciencesBehavioral Neuroscience0302 clinical medicineDopamineDAT-KO ratAvoidance LearningGeneticsmedicineAnimalsFear conditioningEpigeneticsprefrontal cortex.Prefrontal cortexdopamine transporterDopamine transporterDopamine Plasma Membrane Transport ProteinsBehavior AnimalbiologyFearfear conditioningRatsDisease Models Animal030104 developmental biologyNeurologyAttention Deficit Disorder with Hyperactivitybiology.proteinSettore BIO/14 - Farmacologiaconditioned preferenceHistone deacetylaseNeuroscience030217 neurology & neurosurgerymedicine.drug
researchProduct

Development of the whisker-to-barrel cortex system.

2018

This review provides an overview on the development of the rodent whisker-to-barrel cortex system from late embryonic stage to the end of the first postnatal month. During this period the system shows a remarkable transition from a mostly genetic-molecular driven generation of crude connectivity, providing the template for activity-dependent structural and functional maturation and plasticity, to the manifestation of a complex behavioral repertoire including social interactions. Spontaneous and sensory-evoked activity is present in neonatal barrel cortex and control the generation of the cortical architecture. Half a century after its first description by Woolsey and van der Loos the whiske…

0301 basic medicineanimal structuresSensory processingBehavior AnimalGeneral NeuroscienceRepertoiremedicine.medical_treatmentCortical architectureEmbryonic StageSomatosensory CortexBarrel cortexBiology03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structureTouch PerceptionCortex (anatomy)VibrissaemedicineAnimalsNerve NetNeuroscience030217 neurology & neurosurgeryCurrent opinion in neurobiology
researchProduct

Barrel cortex: What is it good for?

2017

The rodent whisker system, with barrel cortex as its most prominent structure, has evolved into a powerful model system to study sensory processing. However, despite the vast amount of data collected on barrel cortex neural activity patterns, as well as its circuitry and plasticity, the precise behavioral and cognitive operations for which this structure is needed are still elusive. Proposed functions of barrel cortex include detection, discrimination, coordination of whisker movements during exploratory locomotion or active touch, and associative learning. Departing from a definition of what exactly constitutes a function and how the involvement of a brain area in a specific task can be es…

0301 basic medicineanimal structuresSensory processingmedicine.medical_treatmentBarrel (horology)Somatosensory system03 medical and health sciencesNeural activityMice0302 clinical medicineCognitionmedicineAnimalsBehavior AnimalGeneral NeuroscienceCognitionSomatosensory CortexBarrel cortexAssociative learningRats030104 developmental biologyVibrissaePsychologyNeuroscience030217 neurology & neurosurgeryCognitive loadNeuroscience
researchProduct

Characterization and isolation of immature neurons of the adult mouse piriform cortex

2015

Physiological studies indicate that the piriform or primary olfactory cortex of adult mammals exhibits a high degree of synaptic plasticity. Interestingly, a subpopulation of cells in the layer II of the adult piriform cortex expresses neurodevelopmental markers, such as the polysialylated form of neural cell adhesion molecule (PSA-NCAM) or doublecortin (DCX). This study analyzes the nature, origin, and potential function of these poorly understood cells in mice. As previously described in rats, most of the PSA-NCAM expressing cells in layer II could be morphologically classified as tangled cells and only a small proportion of larger cells could be considered semilunar-pyramidal transitiona…

0301 basic medicinebiologyNeurogenesisDoublecortinCell biology03 medical and health sciencesCellular and Molecular NeurosciencePrimary olfactory cortex030104 developmental biology0302 clinical medicinenervous systemDevelopmental NeuroscienceAntigenNeuroblastPiriform cortexSynaptic plasticitybiology.proteinNeural cell adhesion moleculeNeuroscience030217 neurology & neurosurgeryDevelopmental Neurobiology
researchProduct

MECP2 impairs neuronal structure by regulating KIBRA

2016

Using a Drosophila model of MECP2 gain-of-function, we identified memory associated KIBRA as a target of MECP2 in regulating dendritic growth. We found that expression of human MECP2 increased kibra expression in Drosophila, and targeted RNAi knockdown of kibra in identified neurons fully rescued dendritic defects as induced by MECP2 gain-of-function. Validation in mouse confirmed that Kibra is similarly regulated by Mecp2 in a mammalian system. We found that Mecp2 gain-of-function in cultured mouse cortical neurons caused dendritic impairments and increased Kibra levels. Accordingly, Mecp2 loss-of-function in vivo led to decreased Kibra levels in hippocampus, cortex, and cerebellum. Togeth…

0301 basic medicinecongenital hereditary and neonatal diseases and abnormalitiesCerebellumMethyl-CpG-Binding Protein 2Dendritic morphologyHippocampusDisease modelsHippocampusArticlelcsh:RC321-571MECP2Mice03 medical and health sciencesMemoryRNA interferencemental disordersmedicineAnimalsHumanslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryCerebral CortexNeuronsGene knockdownMECP2 duplication syndromebiologybiology.organism_classificationMECP2nervous system diseasesCortex (botany)Disease Models AnimalDrosophila melanogaster030104 developmental biologymedicine.anatomical_structureNeurologyCerebral cortexDrosophilaDrosophila melanogasterNeuroscienceNeurobiology of Disease
researchProduct

Dysregulated Prefrontal Cortex Inhibition in Prepubescent and Adolescent Fragile X Mouse Model

2020

Changes in excitation and inhibition are associated with the pathobiology of neurodevelopmental disorders of intellectual disability and autism and are widely described in Fragile X syndrome (FXS). In the prefrontal cortex (PFC), essential for cognitive processing, excitatory connectivity and plasticity are found altered in the FXS mouse model, however, little is known about the state of inhibition. To that end, we investigated GABAergic signaling in the Fragile X Mental Retardation 1 (FMR1) knock out (Fmr1-KO) mouse medial PFC (mPFC). We report changes at the molecular, and functional levels of inhibition at three (prepubescence) and six (adolescence) postnatal weeks. Functional changes we…

0301 basic medicinecongenital hereditary and neonatal diseases and abnormalitiesGABAB receptorBiologyInhibitory postsynaptic potentiallcsh:RC321-57103 medical and health sciencesCellular and Molecular NeuroscienceGABA0302 clinical medicineNeurodevelopmental disorderSDG 3 - Good Health and Well-beingmedicinePrefrontal cortexMolecular Biologylcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal Researchprefrontal cortexGABAA receptormedicine.diseaseelectrophysiologyFMR1Fragile X syndrome030104 developmental biologyplasticityFragile XGABAergic/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beingNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Molecular Neuroscience
researchProduct

Effects of Dopamine on the Immature Neurons of the Adult Rat Piriform Cortex

2020

The layer II of the adult piriform cortex (PCX) contains a numerous population of immature neurons. Interestingly, in both mice and rats, most, if not all, these cells have an embryonic origin. Moreover, recent studies from our laboratory have shown that they progressively mature into typical excitatory neurons of the PCX layer II. Therefore, the adult PCX is considered a “non-canonical” neurogenic niche. These immature neurons express the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a molecule critical for different neurodevelopmental processes. Dopamine (DA) is a relevant neurotransmitter in the adult CNS, which also plays important roles in neural development and …

0301 basic medicinedopamine D2 receptorPSA-NCAMPopulationBiologylcsh:RC321-57103 medical and health scienceschemistry.chemical_compoundpiriform cortex0302 clinical medicineDopaminePiriform cortexDopamine receptor D2medicineeducationNeurotransmitterlcsh:Neurosciences. Biological psychiatry. Neuropsychiatryeducation.field_of_studyGeneral NeuroscienceDopaminergicBrief Research ReportCell biology030104 developmental biologychemistrynervous systemplasticityNeural cell adhesion moleculedopamineNeural development030217 neurology & neurosurgeryNeurosciencemedicine.drug
researchProduct

2018

During early development the structure and function of the cerebral cortex is critically organized by subplate neurons (SPNs), a mostly transient population of glutamatergic and GABAergic neurons located below the cortical plate. At the molecular and morphological level SPNs represent a rather diverse population of cells expressing a variety of genetic markers and revealing different axonal-dendritic morphologies. Electrophysiologically SPNs are characterized by their rather mature intrinsic membrane properties and firing patterns. They are connected via electrical and chemical synapses to local and remote neurons, e.g., thalamic relay neurons forming the first thalamocortical input to the …

0301 basic medicineeducation.field_of_studyNeocortexPopulationNeuroscience (miscellaneous)Sensory systemBrain damageBiology03 medical and health sciencesCellular and Molecular NeuroscienceGlutamatergic030104 developmental biology0302 clinical medicinemedicine.anatomical_structureCerebral cortexSubplatemedicineGABAergicAnatomymedicine.symptomeducationNeuroscience030217 neurology & neurosurgeryFrontiers in Neuroanatomy
researchProduct

Nitric oxide/cGMP signaling via guanylyl cyclase isoform 1 modulates glutamate and GABA release in somatosensory cortex of mice

2017

Abstract In hippocampus, two guanylyl cyclases (NO-GC1 and NO-GC2) are involved in the transduction of the effects of nitric oxide (NO) on synaptic transmission. However, the respective roles of the NO-GC isoforms on synaptic transmission are less clear in other regions of the brain. In the present study, we used knock-out mice deficient for the NO-GC1 isoform (NO-GC1 KO) to analyze its role in the glutamatergic and GABAergic neurotransmission at pyramidal neurons in layers II/III of somatosensory cortex. NO-GC1 KO slices revealed reduced frequencies of miniature excitatory- and inhibitory-postsynaptic currents, increased paired-pulse ratios and decreased input–output curves of evoked signa…

0301 basic medicineendocrine systemgenetic structuresGlutamic AcidReceptors Cell SurfaceAMPA receptorBiologyNeurotransmissionNitric OxideInhibitory postsynaptic potentialHippocampusSynaptic Transmission03 medical and health sciencesGlutamatergicSoluble Guanylyl Cyclase0302 clinical medicineAnimalsCyclic GMPgamma-Aminobutyric AcidMice KnockoutGeneral NeuroscienceGlutamate receptorSomatosensory CortexCell biology030104 developmental biologyGuanylate CyclaseSynapsesExcitatory postsynaptic potentialNMDA receptorGABAergicNeuroscience030217 neurology & neurosurgeryNeuroscience
researchProduct