Search results for "Cortex"

showing 10 items of 1827 documents

Neither Cathodal nor Anodal Transcranial Direct Current Stimulation on the Left Dorsolateral Prefrontal Cortex alone or Applied During Moderate Aerob…

2020

There is converging evidence that both aerobic exercise (AE) and transcranial direct current stimulation (tDCS) can acutely modulate executive functions (EF). In addition, recent studies have proposed the beneficial effects of applying tDCS during AE on physical performance. This study aimed to investigate whether tDCS applied during an AE session additionally or differently effects EF. Therefore, five experiments were conducted in a counterbalanced pre-post-retention crossover design to explore the acute effects of tDCS and AE on EF (inhibition and updating) once in isolation (i.e., either cathodal, anodal tDCS or AE alone as controls) and once in a combined application (i.e., anodal and c…

0301 basic medicinemedicine.medical_specialtyTranscranial direct-current stimulationbusiness.industryGeneral Neurosciencemedicine.medical_treatmentPrefrontal CortexPhysical exercisePerceived exertionAudiologyNeuropsychological TestsExecutive functionsTranscranial Direct Current StimulationCrossover study03 medical and health sciencesExecutive Function030104 developmental biology0302 clinical medicineHeart ratemedicineAerobic exerciseAnalysis of variancebusinessExercise030217 neurology & neurosurgeryNeuroscience
researchProduct

Effects of More-Affected vs. Less-Affected Motor Cortex tDCS in Parkinson’s Disease

2017

Objective. To evaluate therapeutic potential of different montages of transcranial direct current stimulation (tDCS) in Parkinson’s Disease (PD) patients with asymmetric motor symptoms. Materials and Methods. Fourteen patients with asymmetric PD underwent, while on treatment, seven separate sessions including electrophysiological and clinical evaluation at baseline and after anodal, cathodal and sham tDCS of the primary motor cortex (M1) of the two hemispheres. Changes in motor cortical excitability were evaluated by transcranial magnetic stimulation. Effects on motor symptoms were assessed by testing finger tapping and upper limb bradykinesia, and by using the Italian validated Movement Di…

0301 basic medicinemedicine.medical_specialtynon-invasive brain stimulationParkinson's diseaseNeurologymedicine.medical_treatmenttDCSlcsh:RC321-57103 medical and health sciencesBehavioral Neuroscience0302 clinical medicinePhysical medicine and rehabilitationmotor cortexmedicineParkinsonâ s diseaselcsh:Neurosciences. Biological psychiatry. NeuropsychiatryBiological PsychiatryOriginal ResearchTranscranial direct-current stimulationcortical excitabilitymedicine.diseaseTranscranial magnetic stimulationElectrophysiology030104 developmental biologymedicine.anatomical_structureNeuropsychology and Physiological PsychologyNeurologyPsychiatry and Mental HealthFinger tappingParkinson’s diseaseSettore MED/26 - NeurologiaPrimary motor cortexPsychologyNeuroscience030217 neurology & neurosurgeryMotor cortexCortical excitability; Motor cortex; Non-invasive brain stimulation; Parkinson’s disease; tDCS; Neuropsychology and Physiological Psychology; Neurology; Psychiatry and Mental Health; Biological Psychiatry; Behavioral NeuroscienceNeuroscienceFrontiers in Human Neuroscience
researchProduct

Transcranial Static Magnetic Field Stimulation over the Primary Motor Cortex Induces Plastic Changes in Cortical Nociceptive Processing.

2018

Transcranial static magnetic field stimulation (tSMS) is a novel and inexpensive, non-invasive brain stimulation (NIBS) technique. Here, we performed non-invasive modulation of intra-epidermal electrical stimulation-evoked potentials (IES-EPs) by applying tSMS or sham stimulation over the primary motor (M1) and somatosensory (S1) cortices in 18 healthy volunteers for 15 min. We recorded EPs after IES before, right after, and 10 min after tSMS. The IES-EP amplitude was significantly reduced immediately after tSMS over M1, whereas tSMS over S1 and sham stimulation did not affect the IES-EP amplitude. Thus, tSMS may affect cortical nociceptive processing. Although the results of intervention f…

0301 basic medicinenon-invasive brain stimulationStandard of carenociceptive processingStimulationSomatosensory systemlcsh:RC321-57103 medical and health sciencesBehavioral Neuroscience0302 clinical medicineintra-epidermal electrical stimulationMedicinepainlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryBiological PsychiatryOriginal Researchbusiness.industryChronic painHealthy subjectsmedicine.diseaseNociceptive processingPsychiatry and Mental health030104 developmental biologyNeuropsychology and Physiological PsychologyNeurologyBrain stimulationtranscranial static magnetic field stimulationPrimary motor cortexbusinessNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in human neuroscience
researchProduct

Lateral Habenula 5-HT2C Receptor Function Is Altered by Acute and Chronic Nicotine Exposures

2021

Serotonin (5-HT) is important in some nicotine actions in the CNS. Among all the 5-HT receptors (5-HTRs), the 5-HT2CR has emerged as a promising drug target for smoking cessation. The 5-HT2CRs within the lateral habenula (LHb) may be crucial for nicotine addiction. Here we showed that after acute nicotine tartrate (2 mg/kg, i.p.) exposure, the 5-HT2CR agonist Ro 60-0175 (5–640 µg/kg, i.v.) increased the electrical activity of 42% of the LHb recorded neurons in vivo in rats. Conversely, after chronic nicotine treatment (6 mg/kg/day, i.p., for 14 days), Ro 60-0175 was incapable of affecting the LHb neuronal discharge. Moreover, acute nicotine exposure increased the 5-HT2CR-immunoreactive (IR)…

0301 basic medicinenucleus accumbensdorsal raphe nucleusmedicine.medical_treatmentstriatumStriatumSmoking cessationSettore BIO/09 - FisiologiaSerotonin -- ReceptorsNicotineNicotine addiction -- Treatment0302 clinical medicinesingle cell-extracellular recordingMedicinesubstantia nigra pars compactadentate gyrusBiology (General)SpectroscopyGeneral MedicineDorsal raphe nucleuComputer Science ApplicationsVentral tegmental area5-HT2C receptorChemistrymedicine.anatomical_structuredepressionaddictionmedicine.drugAgonistmedicine.medical_specialtyendocrine systemQH301-705.5medicine.drug_classRo 60-0175ventral tegmental areaNucleus accumbensDentate gyruCatalysisInorganic Chemistry03 medical and health sciencesInternal medicineNucleus accumbenPhysical and Theoretical ChemistryQD1-999Molecular BiologyHabenulabusiness.industryOrganic Chemistry030104 developmental biologyEndocrinologySmoking cessationSerotoninbusinessSerotonin -- Agonists030217 neurology & neurosurgerymedial prefrontal cortexInternational Journal of Molecular Sciences
researchProduct

Modulation of Neocortical Development by Early Neuronal Activity: Physiology and Pathophysiology.

2017

Animal and human studies revealed that patterned neuronal activity is an inherent feature of developing nervous systems. This review summarizes our current knowledge about the mechanisms generating early electrical activity patterns and their impact on structural and functional development of the cerebral cortex. All neocortical areas display distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, intermittent spontaneous activity is synchronized within small neuronal networks, becoming more complex with further development. This transition is accompanied by a gradual shift from electrical to chemical synaptic transmiss…

0301 basic medicinesomatosensory cortexReviewBiologylcsh:RC321-57103 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compound0302 clinical medicineSubplatemedicinePremovement neuronal activityhumanddc:610Neurotransmitterlcsh:Neurosciences. Biological psychiatry. Neuropsychiatrydevelopmentspontaneous activityNeocortexGlutamate receptorrodentChemical synaptic transmission030104 developmental biologymedicine.anatomical_structureElectrical SynapseschemistryCerebral cortexsubplatecerebral cortexNeuroscience030217 neurology & neurosurgeryNeuroscience
researchProduct

Reduced firing rates of pyramidal cells in frontal cortex of APP/PS1 can be restored by acute treatment with levetiracetam

2019

AbstractIn recent years aberrant neural oscillations in various cortical areas have emerged as a common physiological hallmark across mouse models of amyloid pathology and patients with Alzheimer’s disease. However, much less is known about the underlying effect of amyloid pathology on single cell activity. Here, we used high density silicon probe recordings from frontal cortex area of 9 months old APP/PS1 mice to show that resting state Local Field Potential (LFP) power in the theta and beta band is increased in transgenic animals, while single cell firing rates, specifically of putative pyramidal cells, are significantly reduced. At the same time, these sparsely firing pyramidal cells pha…

0303 health sciencesFrontal cortexResting state fMRITransgeneCellLocal field potentialBiology03 medical and health sciencesBeta band0302 clinical medicinemedicine.anatomical_structuremedicineBeta RhythmLevetiracetamNeuroscience030217 neurology & neurosurgery030304 developmental biologymedicine.drug
researchProduct

New insight on the role of late indirect‐wave pathway underlying theta‐burst stimulation‐induced plasticity

2020

International audience

0303 health sciencesPhysiologyChemistryMotor CortexStimulationPlasticityEvoked Potentials MotorTranscranial Magnetic StimulationTheta burst03 medical and health sciencesIntermittent Theta Burst Stimulation0302 clinical medicine[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]corticospinal excitabilityI-waveNeuroscience030217 neurology & neurosurgeryComputingMilieux_MISCELLANEOUS030304 developmental biology
researchProduct

Cortical Recruitment Determines Learning Dynamics and Strategy

2018

AbstractSalience is a broad and widely used concept in neuroscience whose neuronal correlates, however, remain elusive. In behavioral conditioning, salience is used to explain various effects, such as stimulus overshadowing, and refers to how fast and strongly a stimulus can be associated with a conditioned event. Here, we show that sounds of diverse quality, but equal intensity and perceptual detectability, can recruit different levels of population activity in mouse auditory cortex. When using these sounds as cues in a Go/NoGo discrimination task, the degree of cortical recruitment matches the salience parameter of a reinforcement learning model used to analyze learning speed. We test an …

0303 health scienceseducation.field_of_studymedia_common.quotation_subjectPopulationStimulus (physiology)OptogeneticsAuditory cortexStimulus Salience03 medical and health sciences0302 clinical medicineSalience (neuroscience)PerceptionReinforcement learning10. No inequalityeducationPsychologyAssociation (psychology)Neuroscience030217 neurology & neurosurgerymedia_common030304 developmental biologySSRN Electronic Journal
researchProduct

2019

Background Little is known about the modulation of cortical excitability in the prefrontal cortex during fear processing in humans. Here, we aimed to transiently modulate and test the cortical excitability during fear processing using transcranial magnetic stimulation (TMS) and brain oscillations in theta and alpha frequency bands with electroencephalography (EEG). Methods We conducted two separate experiments (no-TMS and TMS). In the no-TMS experiment, EEG recordings were performed during the instructed fear paradigm in which a visual cue (CS+) was paired with an aversive unconditioned stimulus (electric shock), while the other visual cue was unpaired (CS-). In the TMS experiment, in addit…

0303 health sciencesgenetic structuresmedicine.diagnostic_testPulse (signal processing)business.industryGeneral Neurosciencemedicine.medical_treatmentAlpha (ethology)StimulationElectroencephalographybehavioral disciplines and activitiesTranscranial magnetic stimulation03 medical and health sciences0302 clinical medicineFrontal lobemedicinePrefrontal cortexOccipital lobebusinessNeuroscience030217 neurology & neurosurgery030304 developmental biologyFrontiers in Neuroscience
researchProduct

Musicianship can be decoded from magnetic resonance images

2020

AbstractLearning induces structural changes in the brain. Especially repeated, long-term behaviors, such as extensive training of playing a musical instrument, are likely to produce characteristic features to brain structure. However, it is not clear to what extent such structural features can be extracted from magnetic resonance images of the brain. Here we show that it is possible to predict whether a person is a musician or a non-musician based on the thickness of the cerebral cortex measured at 148 brain regions en-compassing the whole cortex. Using a supervised machine-learning technique, we achieved a significant (κ = 0.321, p < 0.001) agreement between the actual and predicted par…

0303 health sciencesmedicine.diagnostic_testbusiness.industryComputer scienceMagnetic resonance imagingMusical instrumentPattern recognitionMusical03 medical and health sciences0302 clinical medicinemedicine.anatomical_structureCerebral cortexCortex (anatomy)medicineArtificial intelligencebusiness030217 neurology & neurosurgery030304 developmental biology
researchProduct