Search results for "Cortical development"
showing 6 items of 16 documents
Pathology-selective antiepileptic effects in the focal freeze-lesion rat model of malformation of cortical development
2021
Malformations of cortical development (MCD) represent a group of rare diseases with severe clinical presentation as epileptic and pharmacoresistant encephalopathies. Morphological studies in tissue from MCD patients have revealed reduced GABAergic efficacy and increased intracellular chloride concentration in neuronal cells as important pathophysiological mechanisms in MCD. Also, in various animal models, alterations of GABAergic inhibition have been postulated as a predominant factor contributing to perilesional hyperexcitability. Along with this line, the NKCC1 inhibitor bumetanide has been postulated as a potential drug for treatment of epilepsy, mediating its antiepileptic effect by red…
PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia
2015
Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimeg…
Heat shock factor 2 is a stress-responsive mediator of neuronal migration defects in models of fetal alcohol syndrome
2014
Fetal alcohol spectrum disorder (FASD) is a frequent cause of mental retardation. However, the molecular mechanisms underlying brain development defects induced by maternal alcohol consumption during pregnancy are unclear. We used normal and Hsf2-deficient mice and cell systems to uncover a pivotal role for heat shock factor 2 (HSF2) in radial neuronal migration defects in the cortex, a hallmark of fetal alcohol exposure. Upon fetal alcohol exposure, HSF2 is essential for the triggering of HSF1 activation, which is accompanied by distinctive post-translational modifications, and HSF2 steers the formation of atypical alcohol-specific HSF1–HSF2 heterocomplexes. This perturbs the in vivo bindi…
Non-cell autonomous and non-catalytic activities of ATX in the developing brain
2015
The intricate formation of the cerebral cortex requires a well-coordinated series of events, which are regulated at the level of cell-autonomous and non-cell autonomous mechanisms. Whereas cell-autonomous mechanisms that regulate cortical development are well-studied, the non cell-autonomous mechanisms remain poorly understood. A non-biased screen allowed us to identify Autotaxin (ATX) as a non cell-autonomous regulator of neural stem cell proliferation. ATX (also known as ENPP2) is best known to catalyze lysophosphatidic acid (LPA) production. Our results demonstrate that ATX affects the localization and adhesion of neuronal progenitors in a cell autonomous and non-cell autonomous manner, …
De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome
2014
Activating mutations in genes encoding phosphatidylinositol 3-kinase (PI3K)-AKT pathway components cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH, OMIM 603387)(1-3). Here we report that individuals with MPPH lacking upstream PI3K-AKT pathway mutations carry de novo mutations in CCND2 (encoding cyclin D2) that are clustered around a residue that can be phosphorylated by glycogen synthase kinase 313 (GSK-3 beta)(4). Mutant CCND2 was resistant to proteasomal degradation in vitro compared to wild-type CCND2. The PI3K-AKT pathway modulates GSK-3 beta activity(4), and cells from individuals with PIK3CA, PIK3R2 or AKT3 mutations showed similar CCND2 accumulation. CCND…
Stick around: Cell–Cell Adhesion Molecules during Neocortical Development
2021
The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell–cell adhesion molecules (C-CAMs), classi…