6533b830fe1ef96bd1297d69

RESEARCH PRODUCT

Stick around: Cell–Cell Adhesion Molecules during Neocortical Development

Jaime Fabra-beserDavid De Agustín-duránIsabel Mateos-whiteCristina Gil-sanz

subject

neocortical developmentOrganogenesisSynaptogenesisneuronsNeocortexReviewExtracellular matrixradial glia cellsaxon targetingCell surface receptorNectinmedicineAnimalsHumansCAMslcsh:QH301-705.5nectinsMammalsneuronal migrationsynaptogenesisNeocortexCell adhesion moleculeChemistryCadherinneurodevelopmental disordersclassical cadherinsGeneral MedicineCorticogenesismedicine.anatomical_structurelcsh:Biology (General)SynapsesCell Adhesion MoleculesNeuroscience

description

The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell–cell adhesion molecules (C-CAMs), classical cadherins and nectins, as well as in their effectors, in the control of fundamental processes related with corticogenesis, with special attention in the cooperative actions among the two families of C-CAMs.

10.3390/cells10010118https://www.mdpi.com/2073-4409/10/1/118