Stick around: Cell-Cell Adhesion Molecules during Neocortical Development
The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to stablish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contacts with additional cells. In this review, we will focus on the role of two important families of cell-cell adhesion molecules (C-CAMs), classi…
ZBTB20 is crucial for the specification of a subset of callosal projection neurons and astrocytes in the mammalian neocortex
ABSTRACT Neocortical progenitor cells generate subtypes of excitatory projection neurons in sequential order followed by the generation of astrocytes. The transcription factor zinc finger and BTB domain-containing protein 20 (ZBTB20) has been implicated in regulation of cell specification during neocortical development. Here, we show that ZBTB20 instructs the generation of a subset of callosal projections neurons in cortical layers II/III in mouse. Conditional deletion of Zbtb20 in cortical progenitors, and to a lesser degree in differentiating neurons, leads to an increase in the number of layer IV neurons at the expense of layer II/III neurons. Astrogliogenesis is also affected in the mut…
Stick around: Cell–Cell Adhesion Molecules during Neocortical Development
The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell–cell adhesion molecules (C-CAMs), classi…
Double In Utero Electroporation to Target Temporally and Spatially Separated Cell Populations.
In utero electroporation is an in vivo DNA transfer technique extensively used to study the molecular and cellular mechanisms underlying mammalian corticogenesis. This procedure takes advantage of the brain ventricles to allow the introduction of DNA of interest and uses a pair of electrodes to direct the entrance of the genetic material into the cells lining the ventricle, the neural stem cells. This method allows researchers to label the desired cells and/or manipulate the expression of genes of interest in those cells. It has multiple applications, including assays targeting neuronal migration, lineage tracing, and axonal pathfinding. An important feature of this method is its temporal a…