0000000000136383

AUTHOR

Cristina Gil-sanz

0000-0002-7827-5480

showing 7 related works from this author

Stick around: Cell-Cell Adhesion Molecules during Neocortical Development

2020

The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to stablish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contacts with additional cells. In this review, we will focus on the role of two important families of cell-cell adhesion molecules (C-CAMs), classi…

Extracellular matrixCorticogenesisNeocortexmedicine.anatomical_structureChemistryCadherinNectinCell adhesion moleculeCell surface receptorSynaptogenesismedicineanatomy_morphologyNeuroscience
researchProduct

ZBTB20 is crucial for the specification of a subset of callosal projection neurons and astrocytes in the mammalian neocortex

2021

ABSTRACT Neocortical progenitor cells generate subtypes of excitatory projection neurons in sequential order followed by the generation of astrocytes. The transcription factor zinc finger and BTB domain-containing protein 20 (ZBTB20) has been implicated in regulation of cell specification during neocortical development. Here, we show that ZBTB20 instructs the generation of a subset of callosal projections neurons in cortical layers II/III in mouse. Conditional deletion of Zbtb20 in cortical progenitors, and to a lesser degree in differentiating neurons, leads to an increase in the number of layer IV neurons at the expense of layer II/III neurons. Astrogliogenesis is also affected in the mut…

MaleNeurogenesisCèl·lulesCellMutation MissenseNeocortexNeuronesCell fate determinationBiologyGene Knockout TechniquesMiceIntellectual DisabilitymedicineAnimalsAbnormalities MultipleProgenitor cellEar DiseasesMolecular BiologyTranscription factorMice KnockoutNeuronsZinc fingerNeocortexStem CellsCalcinosisCell biologyMice Inbred C57BLMuscular Atrophymedicine.anatomical_structurenervous systemAstrocytesExcitatory postsynaptic potentialFemaleSignal TransductionTranscription FactorsResearch ArticleDevelopmental BiologyAstrocyte
researchProduct

Differential expression levels of Sox9 in early neocortical radial glial cells regulate the decision between stem cell maintenance and differentiation

2021

ABSTRACTRadial glial progenitor cells (RGCs) in the dorsal forebrain directly or indirectly produce excitatory projection neurons and macroglia of the neocortex. Recent evidence shows that the pool of RGCs is more heterogeneous than originally thought and that progenitor subpopulations can generate particular neuronal cell types. Using single cell RNA sequencing, we have studied gene expression patterns of two subtypes of RGCs that differ in their neurogenic behavior. One progenitor type rapidly produces postmitotic neurons, whereas the second progenitor remains relatively quiescence before generating neurons. We have identified candidate genes that are differentially expressed between thes…

Cell typeTranscription GeneticNeurogenesisEpendymoglial CellsGenetic VectorsNeocortexNerve Tissue ProteinsBiologyMiceradial glia cellsprogenitors diversityGenes ReporterPregnancyGene expressionmedicineAnimalscortical developmentProgenitors diversityCell Self RenewalProgenitor cellPromoter Regions GeneticTranscription factorResearch ArticlesInjections IntraventricularProgenitorNeuronsNeocortexCortical developmentGeneral NeuroscienceCell CycleGene Expression Regulation DevelopmentalSOX9 Transcription FactorEmbryonic stem cellCell biologyMice Inbred C57BLCorticogenesisElectroporationmedicine.anatomical_structureCerebral cortexForebrainFemalesense organsSingle-Cell AnalysisStem cellNeuroscienceNeurogliaRadial glia cellsCellular/MolecularSox9
researchProduct

Stick around: Cell–Cell Adhesion Molecules during Neocortical Development

2021

The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell–cell adhesion molecules (C-CAMs), classi…

neocortical developmentOrganogenesisSynaptogenesisneuronsNeocortexReviewExtracellular matrixradial glia cellsaxon targetingCell surface receptorNectinmedicineAnimalsHumansCAMslcsh:QH301-705.5nectinsMammalsneuronal migrationsynaptogenesisNeocortexCell adhesion moleculeChemistryCadherinneurodevelopmental disordersclassical cadherinsGeneral MedicineCorticogenesismedicine.anatomical_structurelcsh:Biology (General)SynapsesCell Adhesion MoleculesNeuroscienceCells
researchProduct

Double In Utero Electroporation to Target Temporally and Spatially Separated Cell Populations.

2020

In utero electroporation is an in vivo DNA transfer technique extensively used to study the molecular and cellular mechanisms underlying mammalian corticogenesis. This procedure takes advantage of the brain ventricles to allow the introduction of DNA of interest and uses a pair of electrodes to direct the entrance of the genetic material into the cells lining the ventricle, the neural stem cells. This method allows researchers to label the desired cells and/or manipulate the expression of genes of interest in those cells. It has multiple applications, including assays targeting neuronal migration, lineage tracing, and axonal pathfinding. An important feature of this method is its temporal a…

Cell typeGeneral Chemical EngineeringNeurogenesisCellGreen Fluorescent ProteinsBiologyGeneral Biochemistry Genetics and Molecular BiologyMiceSpatio-Temporal AnalysisNeural Stem CellsPregnancymedicineAnimalsRegulation of gene expressionGeneral Immunology and MicrobiologyGeneral NeuroscienceElectroporationNeurogenesisBrainGene Expression Regulation DevelopmentalDNAEmbryo MammalianEmbryonic stem cellNeural stem cellMice Inbred C57BLCorticogenesismedicine.anatomical_structureElectroporationFemaleNeurosciencePlasmidsJournal of visualized experiments : JoVE
researchProduct

Vibrio harveyi causes disease in seahorse, Hippocampus sp.

2001

A mass mortality among cultured seahorses, Hippocampus kuda and Hippocampus sp., occurred in spring 1998 in Tenerife, Spain. Seahorses were held together with tropical shrimps, Stenopus hispidus, in glass aquaria supplied with 1000 L of sea water at 25 °C. The water supply was conducted between different tanks that contained various marine species, such as octopus, Octopus vulgaris, star®sh, Asterias rubens, sea-urchin, Paracentrotus lividu, greater weever, Trachinus draco, grouper, Epinephelus guaz and Canarian shrimp, Lismata amboiens. None of these species was affected, including the shrimps that shared aquaria with the seahorses. Mortalities of seahorses were very high (more than 90%), …

Stenopus hispidusbiologySeahorseVibrio harveyiVeterinary (miscellaneous)GrouperHippocampus kudaAquatic Sciencebiology.organism_classificationLined seahorseTrachinus dracoShrimpMicrobiologyJournal of Fish Diseases
researchProduct

Perlecan controls neurogenesis in the developing telencephalon.

2006

This article is available from: http://www.biomedcentral.com/1471-213X/7/29

MaleTelencephalonLaminaOrganogenesisApoptosisCell CountNeocortexPerlecanExencephalyBiologyBasement MembraneMiceFetal Organ MaturityInterneuronsPregnancymedicineAnimalsHedgehog Proteinslcsh:QH301-705.5Embryonic Stem CellsCell ProliferationBasement membraneNeuronsCerebrumNeurogenesisAnatomymedicine.diseaseImmunohistochemistryCell biologyNeuroepithelial cellmedicine.anatomical_structurelcsh:Biology (General)embryonic structuresbiology.proteinMicrocephalyBasal laminaFemaleFibroblast Growth Factor 2Heparan Sulfate ProteoglycansDevelopmental BiologyResearch ArticleBMC developmental biology
researchProduct