Search results for "Cosmic Ray"

showing 10 items of 301 documents

Calibration of the RPC charge readout in the ARGO-YBJ experiment

2012

""The charge readout of Resistive Plate Chambers (RPCs) is implemented in the ARGO-YBJ experiment to measure the charged particle density of the shower front up to 10^4\\\/m^2, enabling the study of the primary cosmic rays with energies in the ''knee'' region. As the first time for RPCs being used this way, a telescope with RPCs and scintillation detectors is setup to calibrate the number of charged particles hitting a RPC versus its charge readout. Air shower particles are taken as the calibration beam. The telescope was tested at sea level and then moved to the ARGO-YBJ site for coincident operation with the ARGO-YBJ experiment. The charge readout shows good linearity with the particle de…

Optical telescopesNuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsCamere a Piastre Resistive (RPC)Resistive plate chamberAstrophysics::High Energy Astrophysical PhenomenaCosmic raylaw.inventionTelescopeSettore FIS/05 - Astronomia E AstrofisicaOpticslawCoincidentAir showersCalibrationSea levelInstrumentationParticle densitiesCosmic raysResistive Plate Chambers Charge read-out Extended Air ShowersPhysicsAir showers Charge readout Dynamic range Knee regions Particle densities Resistive plate chambers; Calibration Charged particles Cosmic rays Experiments Optical telescopes Sea level Telescopes; Particle spectrometersResistive touchscreenScintillationDynamic rangeCharge readoutParticle spectrometersbusiness.industryCharged particlesSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsCharged particleAir showerCalibrazione della Risposta Analogica di RPCKnee regionsLettura Analogica di RPCCalibrationResistive plate chambersbusinessExperimentsTelescopes
researchProduct

Linking gamma-ray spectra of supernova remnants to the cosmic ray injection properties in the aftermath of supernovae

2017

The acceleration times of the highest-energy particles which emit gamma-rays in young and middle-age SNRs are comparable with SNR age. If the number of particles starting acceleration was varying during early times after the supernova explosion then this variation should be reflected in the shape of the gamma-ray spectrum. We use the solution of the non-stationary equation for particle acceleration in order to analyze this effect. As a test case, we apply our method to describe gamma-rays from IC443. As a proxy of the IC443 parent supernova we consider SN1987A. First, we infer the time dependence of injection efficiency from evolution of the radio spectral index in SN1987A. Then, we use the…

Particle numberAstrophysics::High Energy Astrophysical PhenomenaSupernovae: generalFOS: Physical sciencesGamma ray spectraCosmic rayAstrophysics01 natural sciences0103 physical sciences010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy AstrophysicsGamma rays: ISMPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Spectral index010308 nuclear & particles physicsGamma raySpectral densityAstronomy and AstrophysicsAstronomy and AstrophysicCosmic rayParticle accelerationSupernovaSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Multi-PeV Signals from a New Astrophysical Neutrino Flux beyond the Glashow Resonance.

2016

The IceCube neutrino discovery was punctuated by three showers with $E_\nu$ ~ 1-2 PeV. Interest is intense in possible fluxes at higher energies, though a marked deficit of $E_\nu$ ~ 6 PeV Glashow resonance events implies a spectrum that is soft and/or cutoff below ~few PeV. However, IceCube recently reported a through-going track event depositing 2.6 $\pm$ 0.3 PeV. A muon depositing so much energy can imply $E_{\nu_\mu} \gtrsim$ 10 PeV. We show that extending the soft $E_\nu^{-2.6}$ spectral fit from TeV-PeV data is unlikely to yield such an event. Alternatively, a tau can deposit this much energy, though requiring $E_{\nu_\tau}$ ~10x higher. We find that either scenario hints at a new flu…

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFOS: Physical sciencesCosmic ray01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Flux (metallurgy)High Energy Physics - Phenomenology (hep-ph)0103 physical sciences010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Muon010308 nuclear & particles physicsGlashow resonanceHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsAstrophysics - Astrophysics of GalaxiesHigh Energy Physics - PhenomenologyAstrophysics of Galaxies (astro-ph.GA)High Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaEvent (particle physics)Energy (signal processing)Astrophysics - Cosmology and Nongalactic AstrophysicsPhysical review letters
researchProduct

Search for Dark Matter Annihilations in the Sun with the 79-String IceCube Detector

2012

We have performed a search for muon neutrinos from dark matter annihilation in the center of the Sun with the 79-string configuration of the IceCube neutrino telescope. For the first time, the DeepCore sub-array is included in the analysis, lowering the energy threshold and extending the search to the austral summer. The 317 days of data collected between June 2010 and May 2011 are consistent with the expected background from atmospheric muons and neutrinos. Upper limits are therefore set on the dark matter annihilation rate, with conversions to limits on spin-dependent and spin-independent WIMP-proton cross-sections for WIMP masses in the range 20 - 5000 GeV. These are the most stringent s…

Particle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesGeneral Physics and AstronomyCosmic rayddc:500.2MASSIVE PARTICLESAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesIceCubeHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)LIMITSWIMP0103 physical sciencesddc:550010306 general physicsLight dark matterCANDIDATESHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsCONSTRAINTSCAPTURENEUTRINOSPhysics and AstronomyNeutrino detector13. Climate actionWeakly interacting massive particlesHigh Energy Physics::ExperimentCryogenic Dark Matter SearchNeutrinoAstrophysics - High Energy Astrophysical PhenomenaPhysical Review Letters
researchProduct

Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

2010

A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based on the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of 40K and the bioluminescence in the sea water. The 40K background is used to calibrate the efficiency of the photo-multiplier tubes.

PhotomultiplierPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAtmospheric muonsFOS: Physical sciencesLINECosmic rayPotassium-4001 natural sciencesParticle detectorNuclear physicsPOTASSIUM-40NEUTRINO TELESCOPESatmospheric muons; depth intensity relation; potassium-400103 physical sciencesDepth intensity relation14. Life underwater010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)ATMOSPHERIC MUONSPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPotassium-40DetectorAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsPERFORMANCEDEPTH INTENSITY RELATIONLIGHTNeutrino detector13. Climate actionddc:540Física nuclearHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]SYSTEMLepton
researchProduct

The ARGO-YBJ Experiment Progresses and Future Extension

2010

Gamma ray source detection above 30 TeV is an encouraging approach for finding galactic cosmic ray origins. All sky survey for gamma ray sources using wide field of view detector is essential for population accumulation for various types of sources above 100 GeV. To target the goals, the ARGO-YBJ experiment has been established. Significant progresses have been made in the experiment. A large air shower detector array in an area of 1 km2 is proposed to boost the sensitivity. Hybrid detections with multi-techniques will allow a good discrimination between different types of primary particles, including photons and protons, thus enable an energy spectrum measurement for individual species. F…

PhotonGamma ray source cosmic ray origin detector arraymedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaPopulationDetector arrayFOS: Physical sciencesCosmic rayAstrophysicsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)detector arrayUltra-high-energy cosmic rayeducationMathematical Physicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studyDetectorGamma ray sourceAstrophysics::Instrumentation and Methods for AstrophysicsGamma rayAstronomy and Astrophysicscosmic ray originCosmic ray originAir showerSpace and Planetary ScienceSkyAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Extraction of the Muon Signals Recorded with the Surface Detector of the Pierre Auger Observatory Using Recurrent Neural Networks

2021

The Pierre Auger Observatory, at present the largest cosmic-ray observatory ever built, is instrumented with a ground array of 1600 water-Cherenkov detectors, known as the Surface Detector (SD). The SD samples the secondary particle content (mostly photons, electrons, positrons and muons) of extensive air showers initiated by cosmic rays with energies ranging from $10^{17}~$eV up to more than $10^{20}~$eV. Measuring the independent contribution of the muon component to the total registered signal is crucial to enhance the capability of the Observatory to estimate the mass of the cosmic rays on an event-by-event basis. However, with the current design of the SD, it is difficult to straightfo…

PhotonPhysics::Instrumentation and DetectorsAstronomyElectron01 natural sciencesHigh Energy Physics - ExperimentAugerHigh Energy Physics - Experiment (hep-ex)mass [cosmic radiation]surface [detector]Observatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]photon: cosmic radiationInstrumentationMathematical PhysicsPhysicsAGASAPhysicsSettore FIS/01 - Fisica SperimentaleDetectorcosmic radiation [photon]Astrophysics::Instrumentation and Methods for AstrophysicsMonte Carlo [numerical calculations]electromagnetic [showers]Augerobservatorycosmic radiation [electron]Analysis and statistical methodsnumerical calculations: Monte CarloAnalysis and statistical methodperformancepositron: cosmic radiationatmosphere [showers]Cherenkov detectordata analysis methodAnalysis and statistical methods; Calibration and fitting methods; Cherenkov detectors; Cluster finding; Large detector systems for particle and astroparticle physics; Pattern recognitionCherenkov counter: waterairneural networkAstrophysics::High Energy Astrophysical Phenomena610FOS: Physical sciencesCosmic raycosmic radiation [positron]cosmic radiation: massCalibration and fitting methodNuclear physicsstatistical analysisPattern recognition0103 physical sciencesshowers: electromagneticddc:530ddc:610High Energy Physics010306 general physicsZenithPierre Auger ObservatoryCalibration and fitting methodscosmic radiation [muon]Muonshowers: atmosphere010308 nuclear & particles physicsdetector: surfacehep-exLarge detector systems for particle and astroparticle physicswater [Cherenkov counter]Cherenkov detectorsCluster findingelectron: cosmic radiationRecurrent neural networkmuon: cosmic radiationLarge detector systems for particle and astroparticle physicExperimental High Energy PhysicsHigh Energy Physics::ExperimentRAIOS CÓSMICOSexperimental results
researchProduct

Upper limit on the cosmic-ray photon flux above 1019 eV using the surface detector of the Pierre Auger Observatory

2008

A method is developed to search for air showers initiated by photons using data recorded by the surface detector of the Auger Observatory. The approach is based on observables sensitive to the longitudinal shower development, the signal risetime and the curvature of the shower front. Applying this method to the data, upper limits on the flux of photons of 3.8 x 10-3, 2.5 x 10-3; and 2.2 x 10-3 km-2 sr-1 yr-1 above 1019 eV, 2 x 1019 eV; and 4 x 1019 eV are derived, with corresponding limits on the fraction of photons being 2.0%, 5.1%, and 31% (all limits at 95% c.l.). These photon limits disfavor certain exotic models of sources of cosmic rays. The results also show that the approach adopted…

Photon[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyFluxFOS: Physical sciencesOsservatorio Pierre AugerCosmic rayFotonesAstrophysicsAstrophysics7. Clean energy01 natural sciencesAugerNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]High Energy Physics - Phenomenology (hep-ph)Raggi cosmiciultra high energy photonsCascada atmosféricaObservatory0103 physical sciences010306 general physicsCiencias ExactasPierre Auger ObservatoryPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)FísicaAstronomy and AstrophysicsPierre Auger ObservatoryEnergia ultra altaCosmic rayHigh Energy Physics - PhenomenologyPair production13. Climate actionFotoniExperimental High Energy Physicsddc:540flux upper limitNeutrinoSciami atmosferici estesi
researchProduct

The ATLAS Inner Detector commissioning and calibration

2010

The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data-taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and insitu calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energ…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsAstronomyTracking (particle physics)Modules7. Clean energy01 natural sciencesATLAS; calibrationHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Heavy IonsDetectors and Experimental TechniquesDetectors de radiacióPhysicsLarge Hadron ColliderDetectorSettore FIS/01 - Fisica SperimentaleInstrumentation and Detectors (physics.ins-det)ATLASAstrophysics and CosmologyTransition radiation detectormedicine.anatomical_structureIonization EnergyComputingMethodologies_DOCUMENTANDTEXTPROCESSINGLHCElementary ParticlesQuantum Field TheoryParticle physicsFOS: Physical sciencesCosmic rayddc:500.2HadronsSilicon Pixel Sensors530OpticsQuantum Field TheoriesAtlas (anatomy)0103 physical sciencesCalibrationmedicineddc:530High Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Measurement Science and InstrumentationOptoelectronics010306 general physicsString TheoryEngineering (miscellaneous)ReadoutNuclear PhysicsATLAS detectorbusiness.industry010308 nuclear & particles physicsFísicaSemiconductor TrackerTransition radiationExperimental High Energy Physicsbusiness
researchProduct

Cosmic-ray muon flux at Canfranc Underground Laboratory

2019

Residual flux and angular distribution of high-energy cosmic muons have been measured in two underground locations at the Canfranc Underground Laboratory (LSC) using a dedicated Muon Monitor. The instrument consists of three layers of fast scintillation detector modules operating as 352 independent pixels. The monitor has flux-defining area of 1 m${}^{2}$, covers all azimuth angles, and zenith angles up to $80^\circ$. The measured integrated muon flux is $(5.26 \pm 0.21) \times 10^{-3}$ m${}^{-2}$s${}^{-1}$ in the Hall A of the LAB2400 and $(4.29 \pm 0.17) \times 10^{-3}$ m${}^{-2}$s${}^{-1}$ in LAB2500. The angular dependence is consistent with the known profile and rock density of the sur…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsFOS: Physical sciencesFluxlcsh:AstrophysicsCosmic rayApplied Physics (physics.app-ph)hiukkasfysiikkaScintillator01 natural sciencesNuclear physicslcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010303 astronomy & astrophysicsEngineering (miscellaneous)ZenithPhysicsMuon010308 nuclear & particles physicsCanfranc Underground LaboratoryPhysics - Applied PhysicsInstrumentation and Detectors (physics.ins-det)Azimuthilmaisimethigh-energy cosmic muonsMuon fluxlcsh:QC770-798High Energy Physics::Experimentkosminen säteily
researchProduct