Search results for "Cosmic-Rays"
showing 10 items of 32 documents
Tau neutrinos in the next decade: from GeV to EeV
2022
Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop.
Embryotoxicity studies of tri-n-butyltin(IV) complexes of 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoic acid and 2-[(E)-2-(3-formyl-4-hydroxyphenyl)-1…
2005
The toxicity studies of free 5-[(E)-2-(aryl)-1-diazenyll-2-hydroxybenzoic acid and 2-[(E)-2-(3-formyl-4-hydroxyphenyl)-1-diazenyllbenzoic acid and their tri-n-butyltin(IV) complexes were evaluated by using sea urchin early developmental stages as recommended model organisms for toxicity tests. The novel complexes, as the parent tri-n-butyltin(IV) chloride (TBTCl), caused mitosis block and induced high embryonic mortality in sea urchin. Copyright (c) 2005 John Wiley & Sons, Ltd.
IceCube Search for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae
2020
Pulsar wind nebulae (PWNe) are the main gamma-ray emitters in the Galactic plane. They are diffuse nebulae that emit nonthermal radiation. Pulsar winds, relativistic magnetized outflows from the central star, shocked in the ambient medium produce a multiwavelength emission from the radio through gamma-rays. Although the leptonic scenario is able to explain most PWNe emission, a hadronic contribution cannot be excluded. A possible hadronic contribution to the high-energy gamma-ray emission inevitably leads to the production of neutrinos. Using 9.5 yr of all-sky IceCube data, we report results from a stacking analysis to search for neutrino emission from 35 PWNe that are high-energy gamma-ray…
Measurement of the Depth of Maximum of Extensive Air Showers above 10(18) eV
2010
We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10¹⁸ eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106⁺³⁵₋₂₁) g/cm²/decade below 1018.24 ± 0.05 eV and (24 ± 3) g/cm²/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm². The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.
Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth
2014
The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xμmax as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xμmax as a useful observable to infer the mass compositi…
Ion–Molecule Rate Constants for Reactions of Sulfuric Acid with Acetate and Nitrate Ions
2022
Atmospheric nucleation from precursor gases is a significant source of cloud condensation nuclei in the troposphere and thus can affect the Earth's radiative balance. Sulfuric acid, ammonia, and amines have been identified as key nucleation precursors in the atmosphere. Studies have also shown that atmospheric ions can react with sulfuric acid to form stable clusters in a process referred to as ion-induced nucleation (IIN). IIN follows similar reaction pathways as chemical ionization, which is used to detect and measure nucleation precursors via atmospheric pressure chemical ionization mass spectrometers. The rate at which ions form clusters depends on the ion-molecule rate constant. Howeve…
Search for ultrahigh energy neutrinos in highly inclined events at the Pierre Auger Observatory
2011
Erratum: Phys. Rev. D 85, 029902(E) (2012) [http://dx.doi.org/10.1103/PhysRevD.85.029902]
Upper limit on the diffuse flux of ultrahigh energy tau neutrinos from the Pierre Auger Observatory
2008
The surface detector array of the Pierre Auger Observatory is sensitive to Earth-skimming tau neutrinos that interact in Earth’s crust. Tau leptons from ντ charged-current interactions can emerge and decay in the atmosphere to produce a nearly horizontal shower with a significant electromagnetic component. The data collected between 1 January 2004 and 31 August 2007 are used to place an upper limit on the diffuse flux of ντ at EeV energies. Assuming an E−2ν differential energy spectrum the limit set at 90% C.L. is E2νdNντdEν<1.3×10−7 GeV cm−2 s−1 sr−1 in the energy range 2×1017 eV<E<2×1019 eV.
Search for neutrino-induced cascades with five years of AMANDA data
2010
Contains fulltext : 97339.pdf (Publisher’s version ) (Closed access) We report on the search for electromagnetic and hadronic showers ("cascades") produced by a diffuse flux of extraterrestrial neutrinos in the AMANDA neutrino telescope. Data for this analysis were recorded during 1001 days of detector livetime in the years 2000-2004. The observed event rates are consistent with the background expectation from atmospheric neutrinos and muons. An upper limit is derived for the diffuse flux of neutrinos of all flavors assuming a flavor ratio of v(e):v(mu):v(tau) = 1:1:1 at the detection site. The all-flavor flux of neutrinos with an energy spectrum Phi proportional to E(-2) is less than 5.0 x…
Rule-guided identification of cosmic-ray patterns in PLASTEX
1992
Some techniques devised in the computer science fields of pattern recognition and expert systems are being applied to the interpretation of EAS responses in the PLASTEX experiment. An attempt is made to codity in a set of rules the expertise of trained researchers who are able to recognize and classify different hit patterns even in the presence of noisy background, and in spite of imperfections in the detector response. The patterns expected to be useful include, but are not limited to, track patterns. The software described here, as a progress report, automatically finds patterns corresponding to isolated tracks, and patterns composed of tracks that connect with each other in a layer of d…