Search results for "Cosmological model"

showing 10 items of 26 documents

Status of Light Sterile Neutrino Searches

2020

A number of anomalous results in short-baseline oscillation may hint at the existence of one or more light sterile neutrino states in the eV mass range and have triggered a wave of new experimental efforts to search for a definite signature of oscillations between active and sterile neutrino states. The present paper aims to provide a comprehensive review on the status of light sterile neutrino searches in mid-2019: we discuss not only the basic experimental approaches and sensitivities of reactor, source, atmospheric, and accelerator neutrino oscillation experiments but also the complementary bounds arising from direct neutrino mass experiments and cosmological observations. Moreover, we r…

Nuclear and High Energy PhysicsParticle physicsSterile neutrinoCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesBibliographyddc:530010306 general physicsNeutrino oscillationPhysics010308 nuclear & particles physicsOscillationHigh Energy Physics::PhenomenologyInstrumentation and Detectors (physics.ins-det)Cosmological modelHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentAtmospheric neutrinoNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmology with a very light Lμ − Lτ gauge boson

2019

In this paper, we explore in detail the cosmological implications of an abelian L − L gauge extension of the Standard Model featuring a light and weakly coupled Z′. Such a scenario is motivated by the longstanding ∼ 4σ discrepancy between the measured and predicted values of the muon’s anomalous magnetic moment, (g − 2) , as well as the tension between late and early time determinations of the Hubble constant. If sufficiently light, the Z′ population will decay to neutrinos, increasing the overall energy density of radiation and altering the expansion history of the early universe. We identify two distinct regions of parameter space in this model in which the Hubble tension can be significa…

Nuclear and High Energy PhysicsParticle physicscosmological modelZ': couplingPopulationNeutrino decoupling01 natural sciences7. Clean energygauge boson: abeliansymbols.namesakeradiation: density0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityenergy: densityNeutrino Physics010306 general physicseducationPhysicsGauge bosoneducation.field_of_studyMuonHubble constantAnomalous magnetic dipole momentspace-time: expansionmuon: magnetic moment010308 nuclear & particles physicsCoupling (probability)Cosmology of Theories beyond the SMHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Beyond Standard Modelsymbolslcsh:QC770-798Neutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]neutrino: decouplingAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's lawJournal of High Energy Physics
researchProduct

The Redshift Distribution of Flat-Spectrum Radio Sources

2003

The redshift distribution of flat-spectrum radio sources with 5 GHz flux densities S>5 mJy is a key component in using current radio lens surveys to probe the cosmological model. We have constructed the first flat-spectrum radio sample in the flux density range 3-20 mJy. Our new sample has 33 sources; we have determined the redshifts of 14 of these (42% complete). The low mean redshift, ~0.75, of our faintest sample needs to be confirmed by further observations to improve the sample completeness. We also increased the redshift completeness of several surveys of brighter flat-spectrum sources. While the mean redshift, ~1.1 of flat-spectrum samples fainter than 1 Jy is nearly constant, the fr…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FluxFOS: Physical sciencesAstronomy and AstrophysicsQuasarAstrophysicsCosmological modelAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsSample (graphics)RedshiftDistribution (mathematics)Space and Planetary ScienceRange (statistics)Astrophysics::Galaxy Astrophysics
researchProduct

Running of featureful primordial power spectra

2017

Current measurements of the temperature and polarization anisotropy power spectra of the Cosmic Microwave Background (CMB) seem to indicate that the naive expectation for the slow-roll hierarchy within the most simple inflationary paradigm may not be respected in nature. We show that a primordial power spectra with localized features could in principle give rise to the observed slow-roll anarchy when fitted to a featureless power spectrum. Future CMB missions have the key to disentangle among the two possible paradigms and firmly establish the slow-roll mechanism as the responsible one for the inflationary period in the early universe. From a model comparison perspective, and assuming that …

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsCosmic microwave backgroundSpectral densityFOS: Physical sciencesCosmological modelAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsPolarization (waves)01 natural sciencesSpectral linesymbols.namesake0103 physical sciencessymbolsStatistical analysisPlanck010306 general physicsAnisotropyAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

Topological defects and large-scale structure

1990

PhysicsDomain wall (string theory)Phase transitionClassical mechanicsScale structureCosmological modelTopology (chemistry)Topological defectPhysical Review D
researchProduct

Relativistic second-order perturbations of the Einstein-de Sitter universe

1998

We consider the evolution of relativistic perturbations in the Einstein-de Sitter cosmological model, including second-order effects. The perturbations are considered in two different settings: the widely used synchronous gauge and the Poisson (generalized longitudinal) one. Since, in general, perturbations are gauge dependent, we start by considering gauge transformations at second order. Next, we give the evolution of perturbations in the synchronous gauge, taking into account both scalar and tensor modes in the initial conditions. Using the second-order gauge transformation previously defined, we are then able to transform these perturbations to the Poisson gauge. The most important feat…

PhysicsNuclear and High Energy PhysicsEinstein–de Sitter universeGravitational waveAstrophysics (astro-ph)Cosmic microwave backgroundFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Cosmological modelPoisson distributionAstrophysicsGeneral Relativity and Quantum CosmologyFormalism (philosophy of mathematics)symbols.namesakeClassical mechanicssymbolsGauge theoryAnisotropyMathematical physics
researchProduct

Current status of modified gravity

2014

We revisit the cosmological viability of the Hu-Sawicki modified gravity scenario. The impact of such a modification on the different cosmological observables, including gravitational waves, is carefully described. The most recent cosmological data, as well as constraints on the relationship between the clustering parameter ${\ensuremath{\sigma}}_{8}$ and the current matter mass-energy density ${\mathrm{\ensuremath{\Omega}}}_{m}$ from cluster number counts and weak lensing tomography, are considered in our numerical calculations. The strongest bound we find is $|{f}_{R0}|l3.7\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$ at 95% C.L. Forthcoming cluster surveys covering $10\text{ …

PhysicsNuclear and High Energy PhysicsFísicaAstrophysics::Cosmology and Extragalactic AstrophysicsCosmological modelOmegaGalaxyCosmologyQuantum mechanicsAstronomiaGalaxy clusterWeak gravitational lensingMathematical physicsPhysical Review D
researchProduct

Observation of direct CP violation in kaon decays

2019

A small matter-antimatter asymmetry of the weak force was experimentally established. This CP violation may be related to the small excess of matter from the big bang. The nature of CP violation in the K0 system has been clarified after 37 years of experimentation: it is due to a small part of the weak interaction (“milliweak interaction”). A non-trivial phase in the weak quark mixing matrix generates “direct CP violation” in the weak Hamiltonian. The experiments demonstrating direct CP violation are discussed.

PhysicsParticle physicsCabibbo–Kobayashi–Maskawa matrixmedia_common.quotation_subjectHigh Energy Physics::PhenomenologyParity (physics)Cosmological modelWeak interactionAsymmetryNuclear physicssymbols.namesakeElectromagnetic calorimetersymbolsCP violationHigh Energy Physics::ExperimentHamiltonian (quantum mechanics)media_common
researchProduct

Non-Linear Relativistic Evolution of Cosmological Perturbations in Irrotational Dust

2008

PhysicsWeyl tensorNonlinear systemsymbols.namesakeDeformation tensorCosmological modelssymbolsAstronomyConservative vector fieldMathematical physics
researchProduct

The galaxy power spectrum take on spatial curvature and cosmic concordance

2020

The concordance of the $\Lambda$CDM cosmological model in light of current observations has been the subject of an intense debate in recent months. The 2018 Planck Cosmic Microwave Background (CMB) temperature anisotropy power spectrum measurements appear at face value to favour a spatially closed Universe with curvature parameter $\Omega_K<0$. This preference disappears if Baryon Acoustic Oscillation (BAO) measurements are combined with Planck data to break the geometrical degeneracy, although the reliability of this combination has been questioned due to the strong tension present between the two datasets when assuming a curved Universe. Here, we approach this issue from yet another point…

Planckcosmological modelCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectCosmological parametersSpatial curvatureDark matterCosmic microwave backgroundCosmic background radiationFOS: Physical sciencesanisotropycosmic background radiationAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)power spectrumCurvature01 natural sciencesGeneral Relativity and Quantum Cosmologydark matterCosmologyacousticsymbols.namesake0103 physical sciencesPlanck010303 astronomy & astrophysicsmedia_commonPhysics[PHYS.GRQC] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]010308 nuclear & particles physicstemperatureAstronomy and AstrophysicsoscillationtensionUniverseGalaxybaryonCosmological tensionsSpace and Planetary Sciencecurvature[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]symbolsgalaxy[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic AstrophysicsPhysics of the Dark Universe
researchProduct