Search results for "Covariates"
showing 10 items of 12 documents
Regression with imputed covariates: A generalized missing-indicator approach
2011
A common problem in applied regression analysis is that covariate values may be missing for some observations but imputed values may be available. This situation generates a trade-off between bias and precision: the complete cases are often disarmingly few, but replacing the missing observations with the imputed values to gain precision may lead to bias. In this paper, we formalize this trade-off by showing that one can augment the regression model with a set of auxiliary variables so as to obtain, under weak assumptions about the imputations, the same unbiased estimator of the parameters of interest as complete-case analysis. Given this augmented model, the bias-precision trade-off may the…
Spatial pattern analysis using hybrid models: an application to the Hellenic seismicity
2016
Earthquakes are one of the most destructive natural disasters and the spatial distribution of their epi- centres generally shows diverse interaction structures at different spatial scales. In this paper, we use a multi-scale point pattern model to describe the main seismicity in the Hellenic area over the last 10 years. We analyze the interaction between events and the relationship with geo- logical information of the study area, using hybrid models as proposed by Baddeley et al. ( 2013 ). In our analysis, we find two competing suitable hybrid models, one with a full parametric structure and the other one based on nonpara- metric kernel estimators for the spatial inhomogeneity.
Model averaging estimation of generalized linear models with imputed covariates
2015
a b s t r a c t We address the problem of estimating generalized linear models when some covariate values are missing but imputations are available to fill-in the missing values. This situation generates a bias-precision trade- off in the estimation of the model parameters. Extending the generalized missing-indicator method proposed by Dardanoni et al. (2011) for linear regression, we handle this trade-off as a problem of model uncertainty using Bayesian averaging of classical maximum likelihood estimators (BAML). We also propose a block model averaging strategy that incorporates information on the missing-data patterns and is computationally simple. An empirical application illustrates our…
A Generalized Missing-Indicator Approach to Regression with Imputed Covariates
2011
We consider estimation of a linear regression model using data where some covariate values are missing but imputations are available to fill in the missing values. This situation generates a tradeoff between bias and precision when estimating the regression parameters of interest. Using only the subsample of complete observations does not cause bias but may imply a substantial loss of precision because the complete cases may be too few. On the other hand, filling in the missing values with imputations may cause bias. We provide the new Stata command gmi, which handles such tradeoff by using either model reduction or Bayesian model averaging techniques in the context of the generalized miss…
Self-exciting point process modelling of crimes on linear networks
2022
Although there are recent developments for the analysis of first and second-order characteristics of point processes on networks, there are very few attempts in introducing models for network data. Motivated by the analysis of crime data in Bucaramanga (Colombia), we propose a spatiotemporal Hawkes point process model adapted to events living on linear networks. We first consider a non-parametric modelling strategy, for which we follow a non-parametric estimation of both the background and the triggering components. Then we consider a semi-parametric version, including a parametric estimation of the background based on covariates, and a non-parametric one of the triggering effects. Our mode…
Including covariates in a space-time point process with application to seismicity
2020
AbstractThe paper proposes a spatio-temporal process that improves the assessment of events in space and time, considering a contagion model (branching process) within a regression-like framework to take covariates into account. The proposed approach develops the forward likelihood for prediction method for estimating the ETAS model, including covariates in the model specification of the epidemic component. A simulation study is carried out for analysing the misspecification model effect under several scenarios. Also an application to the Italian seismic catalogue is reported, together with the reference to the developed R package.
Long-term experiments and strip plot designs
2015
In a long-term experiment usually the experimenter needs to know whether the effect of a treatment varies over time. But time usually has both a fixed and a random effects over the output and the difficulty in the analysis depends on the particular design considered and the availability of covariates. Actually, as shown in the paper, the presence of covariates can be very useful to model the random effect of time. In this paper a model to analyze data from a long-term strip plot design with covariates is proposed. Its effectiveness will be tested using both simulated and real data from a crop rotation experiment.
ETAS Space–Time Modeling of Chile Triggered Seismicity Using Covariates: Some Preliminary Results
2021
Chilean seismic activity is one of the strongest in the world. As already shown in previous papers, seismic activity can be usefully described by a space–time branching process, such as the ETAS (Epidemic Type Aftershock Sequences) model, which is a semiparametric model with a large time-scale component for the background seismicity and a small time-scale component for the triggered seismicity. The use of covariates can improve the description of triggered seismicity in the ETAS model, so in this paper, we study the Chilean seismicity separately for the North and South area, using some GPS-related data observed together with ordinary catalog data. Our results show evidence that the use of s…
Goodness-of-fit tests for parametric excess hazard rate models with covariates
2017
In this paper we propose a general methodology for testing the null hypothesis that an excess hazard rate model, with or without covariates, belongs to a parametric family. Estimating the excess hazard rate function parametrically through the maximum likelihood method and non-parametrically (or semi-parametrically) we build a discrepancy process which is shown to be asymptotically Gaussian under the null hypothesis. Based on this result we are able to build some statistical tests in order to decide wether or not the null hypothesis is acceptable. We illustrate our results by the construction of chi-square tests which the behavior is studied through a Monte-Carlo study. Then the testing proc…
Efficient design and modeling strategies for follow-up studies with time-varying covariates
2015
Epidemiological studies can often be designed in several ways, some of which may be more optimal than others. Possible designs may differ in the required resources or the ability to provide reliable answers to the questions under study. In addition, once the data are collected, the selected modeling approach may affect how efficiently the data are utilized. The purpose of this dissertation is to investigate efficient designs and analysis meth ods in follow-up studies with longitudinal measurements. A key question is how to select optimally a subcohort for a new longitudinal covariate measurement if we cannot afford to measure the entire cohort. Another key question we consider is how to determine …