6533b851fe1ef96bd12a9821

RESEARCH PRODUCT

Self-exciting point process modelling of crimes on linear networks

Nicoletta D’angeloDavid PayaresGiada AdelfioJorge Mateu

subject

Statistics and Probability22/3 OA procedureHawkes processeCovariatecrime datacovariatesself-exciting point processesSelf-exciting point processeSpatio-temporal point processesITC-ISI-JOURNAL-ARTICLELinear networklinear networksspatio-temporal point processesCrime dataStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaHawkes processes

description

Although there are recent developments for the analysis of first and second-order characteristics of point processes on networks, there are very few attempts in introducing models for network data. Motivated by the analysis of crime data in Bucaramanga (Colombia), we propose a spatiotemporal Hawkes point process model adapted to events living on linear networks. We first consider a non-parametric modelling strategy, for which we follow a non-parametric estimation of both the background and the triggering components. Then we consider a semi-parametric version, including a parametric estimation of the background based on covariates, and a non-parametric one of the triggering effects. Our model can be easily adapted to multi-type processes. Our network model outperforms a planar version, improving the fitting of the self-exciting point process model.

10.1177/1471082x221094146https://doi.org/10.1177/1471082x221094146