6533b851fe1ef96bd12a9821
RESEARCH PRODUCT
Self-exciting point process modelling of crimes on linear networks
Nicoletta D’angeloDavid PayaresGiada AdelfioJorge Mateusubject
Statistics and Probability22/3 OA procedureHawkes processeCovariatecrime datacovariatesself-exciting point processesSelf-exciting point processeSpatio-temporal point processesITC-ISI-JOURNAL-ARTICLELinear networklinear networksspatio-temporal point processesCrime dataStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaHawkes processesdescription
Although there are recent developments for the analysis of first and second-order characteristics of point processes on networks, there are very few attempts in introducing models for network data. Motivated by the analysis of crime data in Bucaramanga (Colombia), we propose a spatiotemporal Hawkes point process model adapted to events living on linear networks. We first consider a non-parametric modelling strategy, for which we follow a non-parametric estimation of both the background and the triggering components. Then we consider a semi-parametric version, including a parametric estimation of the background based on covariates, and a non-parametric one of the triggering effects. Our model can be easily adapted to multi-type processes. Our network model outperforms a planar version, improving the fitting of the self-exciting point process model.
year | journal | country | edition | language |
---|---|---|---|---|
2022-05-19 | Statistical modelling |