0000000000910386
AUTHOR
David Payares
Self-exciting point process modelling of crimes on linear networks
Although there are recent developments for the analysis of first and second-order characteristics of point processes on networks, there are very few attempts in introducing models for network data. Motivated by the analysis of crime data in Bucaramanga (Colombia), we propose a spatiotemporal Hawkes point process model adapted to events living on linear networks. We first consider a non-parametric modelling strategy, for which we follow a non-parametric estimation of both the background and the triggering components. Then we consider a semi-parametric version, including a parametric estimation of the background based on covariates, and a non-parametric one of the triggering effects. Our mode…
Hawkes processes on networks for crime data
Motivated by the analysis of crime data in Bucaramanga (Colombia), we propose a spatio-temporal Hawkes point process model adapted to events living on linear networks. We first consider a non-parametric modelling strategy, for both the background and the triggering components, and then we include a parametric estimation of the background based on covariates, and a non-parametric one of the triggering effects. Our network model outperforms a planar version, improving the fitting of the self-exciting point process model.