An analysis of Italian university students' performance through segmented regression models: gender differences in STEM courses
AbstractThis paper investigates gender differences in university performances in Science, Technology, Engineering and Mathematics (STEM) courses in Italy, proposing a novel application through the segmented regression models. The analysis concerns freshmen students enrolled at a 3-year STEM degree in Italian universities in the last decade, with a focus on the relationship between the number of university credits earned during the first year (a good predictor of the regularity of the career) and the probability of getting the bachelor degree within 4 years. Data is provided by the Italian Ministry of University and Research (MIUR). Our analysis confirms that first-year performance is strong…
Determinants of spatial intensity of stop locations on cruise passengers tracking data
This paper aims at analyzing the spatial intensity in the distribution of stop locations of cruise passengers during their visit at the destination through a stochastic point process modelling approach on a linear network. Data collected through the integration of GPS tracking technology and questionnaire-based survey on cruise passengers visiting the city of Palermo are used, to identify the main determinants which characterize their stop locations pattern. The spatial intensity of stop locations is estimated through a Gibbs point process model, taking into account for both individual-related variables, contextual-level information, and for spatial interaction among stop points. The Berman…
ETAS Space–Time Modeling of Chile Triggered Seismicity Using Covariates: Some Preliminary Results
Chilean seismic activity is one of the strongest in the world. As already shown in previous papers, seismic activity can be usefully described by a space–time branching process, such as the ETAS (Epidemic Type Aftershock Sequences) model, which is a semiparametric model with a large time-scale component for the background seismicity and a small time-scale component for the triggered seismicity. The use of covariates can improve the description of triggered seismicity in the ETAS model, so in this paper, we study the Chilean seismicity separately for the North and South area, using some GPS-related data observed together with ordinary catalog data. Our results show evidence that the use of s…
Gender Differences In Stem Courses: Analysis Of Italian Students' Performance
Gender gap in Science, Technology, Engineering and Mathematics (STEM) courses is a prevalent topic in the recent literature, and quantitative studies on this relationship are essential to understand better the discussion and issues claimed by the arguments and the theories on this topic. In Italy, since 1989, the overall share of females enrolling at university is larger than the males' one, but females are still underrepresented in almost all the STEM fields, while overrepresented in nursing, humanities, and law schools. Our paper aims to investigate the gender differences in terms of university performance in STEM courses in Italy. This is done via segmented regression models, representin…
Inhomogeneous spatio-temporal point processes on linear networks for visitors’ stops data
We analyse the spatio-temporal distribution of visitors' stops by touristic attractions in Palermo (Italy) using theory of stochastic point processes living on linear networks. We first propose an inhomogeneous Poisson point process model, with a separable parametric spatio-temporal first-order intensity. We account for the spatial interaction among points on the given network, fitting a Gibbs point process model with mixed effects for the purely spatial component. This allows us to study first-order and second-order properties of the point pattern, accounting both for the spatio-temporal clustering and interaction and for the spatio-temporal scale at which they operate. Due to the strong d…
ETAS Space time modelling of Chile induced seismicity using covariates.
<p>Chilean seismic activity is among the strongest ones in the world. As already shown in previous papers, seismic activity can be usefully described by a space-time branching process, like the ETAS (Epidemic Type Aftershock Sequences) model, which is a semiparametric model with a large time scale component for the background seismicity and a small time scale component for the induced seismicity. The large-scale component intensity function  is usually estimated by  nonparametric techniques, specifically in our paper we used the Forward Likelihood Predictive approach (FLP); the induced seismicity is modelled with a parametric space-time function. In c…
Spatio-Temporal Spread Pattern of COVID-19 in Italy
This paper investigates the spatio-temporal spread pattern of COVID-19 in Italy, during the first wave of infections, from February to October 2020. Disease mappings of the virus infections by using the Besag–York–Mollié model and some spatio-temporal extensions are provided. This modeling framework, which includes a temporal component, allows the studying of the time evolution of the spread pattern among the 107 Italian provinces. The focus is on the effect of citizens’ mobility patterns, represented here by the three distinct phases of the Italian virus first wave, identified by the Italian government, also characterized by the lockdown period. Results show the effectiveness of the lockdo…
Estimating the Number of Changepoints in Segmented Regression Models: Comparative Study and Application
This paper deals with the problem of selecting the number of changepoints in segmented regression models. The aim is to review selection criteria, namely information criteria and hypothesis testing, and to propose a novel application in the context of students' careers in higher education. The performance of the selection criteria is assessed through simulation studies. Furthermore, we investigate the relationship between University students' performance and one of its main determinants, finding out that this relationship is actually broken-line.
Local inhomogeneous second-order characteristics for spatio-temporal point processes occurring on linear networks
AbstractPoint processes on linear networks are increasingly being considered to analyse events occurring on particular network-based structures. In this paper, we extend Local Indicators of Spatio-Temporal Association (LISTA) functions to the non-Euclidean space of linear networks, allowing to obtain information on how events relate to nearby events. In particular, we propose the local version of two inhomogeneous second-order statistics for spatio-temporal point processes on linear networks, the K- and the pair correlation functions. We put particular emphasis on the local K-functions, deriving come theoretical results which enable us to show that these LISTA functions are useful for diagn…
Locally weighted spatio-temporal minimum contrast for Log-Gaussian Cox Processes
We propose a local version of the spatio-temporal log-Gaussian Cox processes (LGCPs) employing the Local Indicators of Spatio-Temporal Association (LISTA) functions into the minimum contrast procedure to obtain space as well as time-varying parameters. We resort to the joint minimum contrast method fitting method to estimate the set of second-order parameters for the class of spatio-temporal LGCPs. This approach has the advantage of being usable in the case of both separable and non-separable parametric specifications of the correlation function of the underlying Gaussian Random Field (GRF).
A fast and efficient picking algorithm for earthquake early warning application based on the variance piecewise constant models
An earthquake warning system, or earthquake early warning system, is a system of accelerometers, seismometers, communication, computers, and alarms that is devised for notifying adjoining regions of a substantial earthquake while it is in progress. This is not the same as earthquake prediction, which is currently incapable of producing decisive event warnings. The implementation of efficient and computationally simple picking algorithm is necessary for this purpose, as well as automatic picking of seismic phases for seismic surveillance and routine earthquake location for fast hypocenter determination. In this paper a method for picking based on the detection of signals changes in variance …
A new picking algorithm based on the variance piecewise constant models
AbstractIn this paper, we propose a novel picking algorithm for the automatic P- and S-waves onset time determination. Our algorithm is based on the variance piecewise constant models of the earthquake waveforms. The effectiveness and robustness of our picking algorithm are tested both on synthetic seismograms and real data. We simulate seismic events with different magnitudes (between 2 and 5) recorded at different epicentral distances (between 10 and 250 km). For the application to real data, we analyse waveforms from the seismic sequence of L’Aquila (Italy), in 2009. The obtained results are compared with those obtained by the application of the classic STA/LTA picking algorithm. Althoug…
Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes
A local version of spatio-temporal log-Gaussian Cox processes is proposed by using Local Indicators of Spatio-Temporal Association (LISTA) functions plugged into the minimum contrast procedure, to obtain space as well as time-varying parameters. The new procedure resorts to the joint minimum contrast fitting method to estimate the set of second-order parameters. This approach has the advantage of being suitable in both separable and non-separable parametric specifications of the correlation function of the underlying Gaussian Random Field. Simulation studies to assess the performance of the proposed fitting procedure are presented, and an application to seismic spatio-temporal point pattern…
Local Spatial Log-Gaussian Cox Processes for seismic data
AbstractIn this paper, we propose the use of advanced and flexible statistical models to describe the spatial displacement of earthquake data. The paper aims to account for the external geological information in the description of complex seismic point processes, through the estimation of models with space varying parameters. A local version of the Log-Gaussian Cox processes (LGCP) is introduced and applied for the first time, exploiting the inferential tools in Baddeley (Spat Stat 22:261–295, 2017), estimating the model by the local Palm likelihood. We provide methods and approaches accounting for the interaction among points, typically described by LGCP models through the estimation of th…
Local inhomogeneous weighted summary statistics for marked point processes
We introduce a family of local inhomogeneous mark-weighted summary statistics, of order two and higher, for general marked point processes. Depending on how the involved weight function is specified, these summary statistics capture different kinds of local dependence structures. We first derive some basic properties and show how these new statistical tools can be used to construct most existing summary statistics for (marked) point processes. We then propose a local test of random labelling. This procedure allows us to identify points, and consequently regions, where the random labelling assumption does not hold, e.g.~when the (functional) marks are spatially dependent. Through a simulatio…
Self-exciting point process modelling of crimes on linear networks
Although there are recent developments for the analysis of first and second-order characteristics of point processes on networks, there are very few attempts in introducing models for network data. Motivated by the analysis of crime data in Bucaramanga (Colombia), we propose a spatiotemporal Hawkes point process model adapted to events living on linear networks. We first consider a non-parametric modelling strategy, for which we follow a non-parametric estimation of both the background and the triggering components. Then we consider a semi-parametric version, including a parametric estimation of the background based on covariates, and a non-parametric one of the triggering effects. Our mode…
Assessing local differences between the spatio-temporal second-order structure of two point patterns occurring on the same linear network
Abstract We introduce Local Indicators of Spatio-Temporal Association (LISTA) functions on linear networks and use them to build a statistical test for local second-order structure. This allows to identify differences in the spatio-temporal clustering behaviour of two point patterns, a point pattern of interest and a background one, both occurring on the same linear network. We assess the performance of the testing procedure for local second-order structure through simulation studies under a variety of scenarios that also account for different generating point processes. We show that the proposed local test is able to correctly identify the spatio-temporal difference in the local second-ord…
Statistical Picking of Multivariate Waveforms
In this paper, we propose a new approach based on the fitting of a generalized linear regression model in order to detect points of change in the variance of a multivariate-covariance Gaussian variable, where the variance function is piecewise constant. By applying this new approach to multivariate waveforms, our method provides simultaneous detection of change points in functional time series. The proposed approach can be used as a new picking algorithm in order to automatically identify the arrival times of P- and S-waves in different seismograms that are recording the same seismic event. A seismogram is a record of ground motion at a measuring station as a function of time, and it typica…
Local LGCP estimation for spatial seismic processes
Using recent results for local composite likelihood for spatial point processes, we show the performance of advanced and flexible statistical models to describe the spatial displacement of earthquake data. Local models described by Baddeley (2017) allow for the possibility of describing both seismic catalogs and sequences. When analysing seismic sequences, the analysis of the small scale variation is the main issue. The interaction among points is taken into account by Log-Gaussian Cox Processes models through the estimation of the parameters of the covariance of the Gaussian Random Field. In their local version these parameters are allowed to vary spatially, and this is a crucial aspect fo…
Classification in point patterns on linear networks under clutter
The problem of features detection under present of clutter in point process on linear networks establishes a methodological and computational challenge with multiple kind of applications as traffic accidents among other. Previous works related to the same topical but developed in more simpler geometries tackles the issue of the clutter removal through the distance of nearest-neighbour and show good results with high classification rates. We extend this procedure to the linear networks motivated by the classification of the traffic accidents on the road network of a city. Simulations demonstrate the performance of the method.
Local Inhomogeneous Weighted Summary Statistics for Marked Point Processes
We introduce a family of local inhomogeneous mark-weighted summary statistics, of order two and higher, for general marked point processes. Depending on how the involved weight function is specified, these summary statistics capture different kinds of local dependence structures. We first derive some basic properties and show how these new statistical tools can be used to construct most existing summary statistics for (marked) point processes. We then propose a local test of random labeling. This procedure allows us to identify points, and consequently regions, where the random labeling assumption does not hold, for example, when the (functional) marks are spatially dependent. Through a sim…