Search results for "Cryoelectron microscopy"

showing 10 items of 36 documents

In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges

2020

Flexible spikes The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein enables viral entry into host cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor and is a major target for neutralizing antibodies. About 20 to 40 spikes decorate the surface of virions. Turoňová et al. now show that the spike is flexibly connected to the viral surface by three hinges that are well protected by glycosylation sites. The flexibility imparted by these hinges may explain how multiple spikes act in concert to engage onto the flat surface of a host cell. Science, this issue p. 203

In situElectron Microscope TomographyGlycanGlycosylationFlexibility (anatomy)virusesProtein domainPneumonia ViralHingeMolecular Dynamics SimulationBiologylaw.inventionBetacoronavirusProtein DomainslawTarget identificationmedicineHumansPandemicsResearch ArticlesHost cell surfaceMultidisciplinarySARS-CoV-2R-ArticlesCryoelectron MicroscopyBiochemCOVID-19MicrobioResearch HighlightCell biologymedicine.anatomical_structureSpike Glycoprotein Coronavirusbiology.proteinRecombinant DNASpike (software development)Protein MultimerizationStructural biologyCoronavirus InfectionsResearch ArticleScience (New York, N.y.)
researchProduct

Sex-related effects in the superhydrophobic properties of damselfly wings in young and old Calopteryx splendens.

2013

Numerous sex-related morphological adaptations are connected to reproductive behavior in animals. For example, females of some insect species can submerge during oviposition, which may lead to sex-related adaptations in the hydrophobicity (water-repellency) due to specialization of certain morphological structures. On the other hand, ageing can cause changes in hydrophobicity of the surface, because the morphological structures can wear with age. Here, we investigated sex-and age-related differences in wing hydrophobicity and in morphology (spine density, wax cover characteristics, size of females' pseudopterostigma) potentially related to hydrophobicity of Calopteryx splendens damselflies.…

MaleSexual ReproductionAgingAnatomy and PhysiologyOdonataInsectOdonataBehavioral EcologyDamselflyMorphogenesisWings AnimalBiomechanicsYoung femaleYoung malemedia_commonSex CharacteristicsMultidisciplinarySexual DifferentiationEcologyAnimal BehaviorEcologyPhysicsQRSex relatedBiomechanical PhenomenaMedicineFemaleHydrophobic and Hydrophilic InteractionsResearch ArticleBiotechnologyanimal structuresmedia_common.quotation_subjectScienceMaterials ScienceBiophysicsBiologyBiomaterialsAnimalsBiologyAnalysis of VarianceEvolutionary BiologyWingCryoelectron MicroscopyReproductive SystemReproductive behaviorbiology.organism_classificationNanostructuresEvolutionary EcologyWaxesZoologyEntomologyDevelopmental BiologyPLoS ONE
researchProduct

Unstructural Biology of TRP Ion Channels: The Role of Intrinsically Disordered Regions in Channel Function and Regulation

2021

The first genuine high-resolution single particle cryo-electron microscopy structure of a membrane protein determined was a transient receptor potential (TRP) ion channel, TRPV1, in 2013. This methodical breakthrough opened up a whole new world for structural biology and ion channel aficionados alike. TRP channels capture the imagination due to the sheer endless number of tasks they carry out in all aspects of animal physiology. To date, structures of at least one representative member of each of the six mammalian TRP channel subfamilies as well as of a few non-mammalian families have been determined. These structures were instrumental for a better understanding of TRP channel function and …

Mammals0303 health sciencesRNA SplicingCryoelectron MicroscopyAlternative splicingProteinsComputational biologyLipids03 medical and health sciencesCrosstalk (biology)Transient receptor potential channelTransient Receptor Potential Channels0302 clinical medicineProtein sequencingMembrane proteinStructural biologyStructural BiologyAnimalsHumansProtein Processing Post-TranslationalMolecular Biology030217 neurology & neurosurgeryIon channel030304 developmental biologyCommunication channelJournal of Molecular Biology
researchProduct

Microscopic observations of superficial ultrastructure of unworn siloxane-hydrogel contact lenses by cryo-scanning electron microscopy

2006

The purpose of this study was to analyze three commercial siloxane-hydrogel contact lens materials, lotrafilcon A, balafilcon A, and galyfilcon A, by cryogenic scanning electron microscopy (cryoSEM). The fully hydrated lenses were frozen in slush liquid nitrogen and qualitatively observed in a cryogenic scanning electron microscope. The superficial ultrastructure of the siloxane-hydrogels was observed at the areas where the lens fractured during sample cryogenic preparation. There are qualitative differences among the three examined materials in the complex polymer network structure existing between the outer layer and the underlying polymer. CryoSEM, although destructive, is a useful tool …

Materials scienceSiloxanesScanning electron microscopeSurface PropertiesBiomedical Engineering02 engineering and technologyContact lens materialsHydrogel Polyethylene Glycol Dimethacrylatelaw.inventionBiomaterials03 medical and health sciences0302 clinical medicineOpticssilicone-hydrogellawMicroscopyMaterials TestingHumansCryo-scanning electron microscopyComposite materialchemistry.chemical_classificationScience & Technologybusiness.industryCryoelectron MicroscopyCryoSEM microscopyPolymerLiquid nitrogenpolymer surface021001 nanoscience & nanotechnologyContact Lenses HydrophilicSiloxane-hydrogel contact lensescryoSEMLens (optics)Contact lenschemistry030221 ophthalmology & optometryUltrastructuremicroscopysiloxane-hydrogels0210 nano-technologybusiness
researchProduct

Self-assembly of janus dendrimers into uniform dendrimersomes and other complex architectures

2010

Janus Drug Delivery Vehicle Efficient drug delivery vehicles need to be produced in a limited size range and with uniform size distribution. The self-assembly of traditional small-molecule and polymeric amphiphiles has led to the production of micelles, liposomes, polymeric micelles, and polymersomes for use in drug delivery applications. Now, Percec et al. (p. 1009 ) describe the self-assembly of Janus-type (i.e., two-headed) dendrimers to produce monodisperse supramolecular constructs, termed “dendrimersomes,” and other complex architectures. The structures, which showed long-term stability as well as very narrow size distributions, were easily produced by the injection of an ethanolic so…

Models MolecularDendrimersMaterials scienceSurface Propertiesta221Complex ArchitecturesNanotechnologyMolecular Dynamics SimulationSurface-Active AgentsBiomimetic MaterialsDendrimerAmphiphileJanusta218LiposomeDrug Carriersta214MultidisciplinaryAntibiotics Antineoplasticta114Molecular StructureVesicleCryoelectron MicroscopyWaterMembranes ArtificialNanostructuresJanus DendrimersSelf-AssemblyMembraneUniform DendrimersomesDoxorubicinPolymersomeSelf-assemblyHydrophobic and Hydrophilic InteractionsScience
researchProduct

Extracellular Albumin and Endosomal Ions Prime Enterovirus Particles for Uncoating That Can Be Prevented by Fatty Acid Saturation

2019

ABSTRACT There is limited information about the molecular triggers leading to the uncoating of enteroviruses under physiological conditions. Using real-time spectroscopy and sucrose gradients with radioactively labeled virus, we show at 37°C, the formation of albumin-triggered, metastable uncoating intermediate of echovirus 1 without receptor engagement. This conversion was blocked by saturating the albumin with fatty acids. High potassium but low sodium and calcium concentrations, mimicking the endosomal environment, also induced the formation of a metastable uncoating intermediate of echovirus 1. Together, these factors boosted the formation of the uncoating intermediate, and the infectiv…

Models MolecularEchovirusHot TemperatureEndosomevirusesImmunologycryoEM structurerasvahapotEndosomesBiologymedicine.disease_causeMicrobiologyDivalentCell Line03 medical and health sciencesVirologyAlbuminsChlorocebus aethiopsExtracellularmedicineAnimalsalbumin030304 developmental biologychemistry.chemical_classificationalbumiinit0303 health sciencesbiokemiaionitenterovirus030302 biochemistry & molecular biologyCryoelectron MicroscopyFatty AcidsFatty acidRNAVirus-Cell InteractionsEnterovirus B HumanenteroviruksetchemistryCapsidvirologia13. Climate actionInsect ScienceBiophysicsCapsid ProteinsuncoatingLow sodium
researchProduct

Limulus polyphemus Hemocyanin: 10 Å Cryo-EM Structure, Sequence Analysis, Molecular Modelling and Rigid-body Fitting Reveal the Interfaces Between th…

2007

Abstract The blue copper protein hemocyanin from the horseshoe crab Limulus polyphemus is among the largest respiratory proteins found in nature (3.5 MDa) and exhibits a highly cooperative oxygen binding. Its 48 subunits are arranged as eight hexamers (1×6mers) that form the native 8×6mer in a nested hierarchy of 2×6mers and 4×6mers. This quaternary structure is established by eight subunit types (termed I, IIA, II, IIIA, IIIB, IV, V, and VI), of which only type II has been sequenced. Crystal structures of the 1×6mer are available, but for the 8×6mer only a 40 A 3D reconstruction exists. Consequently, the structural parameters of the 8×6mer are not firmly established, and the molecular inte…

Models MolecularMolecular modelCryo-electron microscopyCopper proteinProtein subunitmedicine.medical_treatmentMolecular Sequence DataStructure-Activity RelationshipStructural BiologyHorseshoe CrabsmedicineAnimalsAmino Acid SequenceProtein Structure QuaternaryMolecular BiologyPhylogenySequence Homology Amino AcidbiologyCryoelectron MicroscopyHemocyaninbiology.organism_classificationProtein Structure TertiaryCrystallographyLimulusHemocyaninsProtein quaternary structureOxygen bindingJournal of Molecular Biology
researchProduct

Nautilus pompilius Hemocyanin: 9 Å Cryo-EM Structure and Molecular Model Reveal the Subunit Pathway and the Interfaces between the 70 Functional Units

2007

Hemocyanins are giant extracellular oxygen carriers in the hemolymph of many molluscs. Nautilus pompilius (Cephalopoda) hemocyanin is a cylindrical decamer of a 350 kDa polypeptide subunit that in turn is a "pearl-chain" of seven different functional units (FU-a to FU-g). Each globular FU has a binuclear copper centre that reversibly binds one O(2) molecule, and the 70-FU decamer is a highly allosteric protein. Its primary structure and an 11 A cryo-electron microscopy (cryo-EM) structure have recently been determined, and the crystal structures of two related FU types are available in the databanks. However, in molluscan hemocyanin, the precise subunit pathway within the decamer, the inter…

Models MolecularMolecular modelProtein Conformationmedicine.medical_treatmentProtein subunitMolecular Sequence DataOctopodiformesAllosteric regulationBiologyHemocyaninTurn (biochemistry)Protein structureStructural BiologyImage Processing Computer-AssistedmedicineAnimalsAmino Acid SequenceMolecular BiologyBinding SitesSequence Homology Amino AcidCryoelectron MicroscopyProtein primary structureHemocyaninCrystallographyHemocyaninsBiophysicsNautilusProtein quaternary structureJournal of Molecular Biology
researchProduct

Keyhole limpet hemocyanin: 9-A CryoEM structure and molecular model of the KLH1 didecamer reveal the interfaces and intricate topology of the 160 fun…

2008

Abstract Hemocyanins are blue copper-containing respiratory proteins in the hemolymph of many arthropods and molluscs. Molluscan hemocyanins are decamers, didecamers, or multidecamers of a 340- to 400-kDa polypeptide subunit containing seven or eight globular functional units (FUs; FU-a to FU-h), each with an oxygen-binding site. The decamers are short 35-nm hollow cylinders, with their lumen narrowed by a collar complex. Our recently published 9-A cryo-electron microscopy/crystal structure hybrid model of a 3.4-MDa cephalopod hemocyanin decamer [Nautilus pompilius hemocyanin (NpH)] revealed the pathway of the seven-FU subunit (340 kDa), 15 types of inter-FU interface, and an asymmetric col…

Models MolecularMolecular modelbiologySequence Homology Amino AcidCryo-electron microscopyProtein subunitmedicine.medical_treatmentCryoelectron MicroscopyMolecular Sequence DataOxygen transportHemocyaninCrystallographyBiopolymersStructural BiologyHemolymphHemocyaninsmedicinebiology.proteinAnimalsProtein quaternary structureAmino Acid SequenceMolecular BiologyKeyhole limpet hemocyaninJournal of molecular biology
researchProduct

10-A cryoEM structure and molecular model of the Myriapod (Scutigera) 6x6mer hemocyanin:understanding a giant oxygen transport protein

2009

Oxygen transport in Myriapoda is maintained by a unique 6x6mer hemocyanin, that is, 36 subunits arranged as six hexamers (1x6mers). In the sluggish diplopod Spirostreptus, the 1x6mers seem to operate as almost or fully independent allosteric units (h approximately 1.3; P(50) approximately 5 torr), whereas in the swift centipede Scutigera, they intensively cooperate allosterically (h approximately 10; P(50) approximately 50 torr). Here, we show the chemomechanical basis of this differential behavior as deduced from hybrid 6x6mer structures, obtained by single-particle cryo-electron microscopy of the Scutigera 6x6mer (10.0 A resolution according to the 0.5 criterion) and docking of homology-m…

Models MolecularMolecular modelmedicine.medical_treatmentProtein subunitMolecular Sequence DataProtein Data Bank (RCSB PDB)Hemocyaninchemistry.chemical_compoundStructural BiologymedicineAnimalsCarboxylateAmino Acid SequenceProtein Structure QuaternaryMolecular BiologyHistidinebiologyCryoelectron MicroscopyOxygen transportHemocyaninSpirostreptusbiology.organism_classificationOxygenCrystallographychemistryHemocyaninsProtein MultimerizationCarrier ProteinsSequence Alignment
researchProduct