Search results for "Crystallite"
showing 10 items of 347 documents
Enhancement of self-sustaining reaction Cu3Si phase formation starting from mechanically activated powders
2000
Mechanical high-energy ball milling of an 3Cu Si elemental powders mixture was used to activate a self-sustaining combustion reaction or so-called self-sustaining high-temperature synthesis (SHS) to form the copper silicide phase, a reaction for which the thermodynamic criterion proposed by Munir for self-propagation reaction is not favorable. A complete characterization of the end-products was performed with X-ray diffraction analysis and scanning electron microscopy. Thermal and structural information describing the combustion front initiated by heating up a sample to 180°C in a Cu:Si system is communicated. This paper clearly shows that the mechanically activated self-sustaining high-tem…
Spark plasma sintering of cobalt ferrite nanopowders prepared by coprecipitation and hydrothermal synthesis.
2007
International audience; Cobalt ferrite exhibits a high coercivity at room temperature and a strong magnetic anisotropy compared to the other spinel ferrites and, consequently appears as an interesting material for permanent magnets and high-density recording. The magnetic properties depend also on the crystallite size. In order to keep the powder properties in a bulk material, dense nanostructured cobalt ferrite has to be sintered. A field activated sintering process like spark plasma sintering (SPS) may be promising for such challenge. The present paper deals with: (i) the preparation of cobalt ferrite by two methods: coprecipitation and hydrothermal synthesis in supercritical water; (ii) …
Photocatalytic activity of non-stoichiometric ZnFe2O4under visible light irradiation
2014
Nanostructured zinc ferrites with different excess iron contents (ZnFe2+zO4, where z = 0.00, 0.05, 0.10 and 0.15) have been synthesized using the sol–gel auto-combustion method. The effect of excess iron on the structural, optical and visible light photocatalytic activity of zinc ferrite samples has been investigated. X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), x-ray magnetic circular dichroism (XMCD), Brunauer–Emmett–Teller theory, scanning electron microscopy (SEM), diffuse reflectance spectroscopy (UV–Vis) and photoluminescence spectroscopy were used to characterize the synthesized non-stoichiometric ZnFe2O4 powders. The XRD patterns demonstrated that the samples con…
A micro-mechanical model for grain-boundary cavitation in polycrystalline materials
2015
In this work, the grain-boundary cavitation in polycrystalline aggregates is investigated by means of a grain-scale model. Polycrystalline aggregates are generated using Voronoi tessellations, which have been extensively shown to retain the statistical features of real microstructures. Nucleation, thickening and sliding of cavities at grain boundaries are represented by specific cohesive laws embodying the damage parameters, whose time evolution equations are coupled to the mechanical model. The formulation is presented within the framework of a grain-boundary formulation, which only requires the discretization of the grain surfaces. Some numerical tests are presented to demonstrate the fea…
Small-angle x-ray scattering studies of melting
1980
The course of melting of melt-crystallized polyethylene fractions and of a poly(ethylene oxide)-polystyrene-poly(ethylene oxide) triblock copolymer has been followed by small-angle x-ray scattering (SAXS). Changes in the intensity and shape of the SAXS curves indicated that both surface melting and melting over the full crystallite thickness (full-strand melting) take place. Full strand melting is the final, irreversible process. Comparison with an analytical model indicates that in the earlier stages of the irreversible, full-strand process the crystallites melt out randomly throughout the bulk. Later stages may occur by the simultaneous melting of a larger stack of crystallites.
Local structure and vibrational dynamics in NiWO4
2001
Abstract Systematic studies of nickel tungstate thin film, amorphous and polycrystalline powders were performed by X-ray absorption spectroscopy at the Ni K and W L1,3 edges, X-ray diffraction and Raman spectroscopy. We found that in spite of the similarity of the local environment around nickel and tungsten ions in all three materials, there is strong difference in the Ni-O and W-O interactions for thin film/amorphous powder and polycrystalline powder. The nickel-oxygen bonding becomes stronger by going from thin film or amorphous powder to polycrystalline tungstate at the expense of the tungsten-oxygen bonding strength. Besides, in thin film and amorphous NiWO4, nickel and tungsten ions h…
High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition
2019
We report high room-temperature mobility in single layer graphene grown by Chemical Vapor Deposition (CVD) after wet transfer on SiO$_2$ and hexagonal boron nitride (hBN) encapsulation. By removing contaminations trapped at the interfaces between single-crystal graphene and hBN, we achieve mobilities up to$\sim70000cm^2 V^{-1} s^{-1}$ at room temperature and$\sim120000cm^2 V^{-1} s^{-1}$ at 9K. These are over twice those of previous wet transferred graphene and comparable to samples prepared by dry transfer. We also investigate the combined approach of thermal annealing and encapsulation in polycrystalline graphene, achieving room temperature mobilities$\sim30000 cm^2 V^{-1} s^{-1}$. These …
Nanoscale assembly processes revealed in the nacroprismatic transition zone of Pinna nobilis mollusc shells
2015
Intricate biomineralization processes in molluscs engineer hierarchical structures with meso-, nano-, and atomic architectures that give the final composite material exceptional mechanical strength and optical iridescence on the macroscale. This multiscale biological assembly inspires new synthetic routes to complex materials. Our investigation of the prism-nacre interface reveals nanoscale details governing the onset of nacre formation using high-resolution scanning transmission electron microscopy. A wedge polishing technique provides unprecedented, large-area specimens required to span the entire interface. Within this region, we find a transition from nanofibrillar aggregation to irregu…
Photoelectrochemical characterization of Cu2O-nanowire arrays electrodeposited into anodic alumina membranes
2007
Perfectly aligned nanowire arrays of polycrystalline Cu2O were grown by template-pulsed electrodeposition from a cupric acetate-sodium acetate bath into anodic alumina membranes (AAM). The photoelectrochemical behavior of arrays with different nanowire lengths (0.5 mu m and 2 mu m) was investigated in neutral solution, and the results compared to those pertaining to Cu2O films grown with the same procedure. Although all samples displayed the same indirect bandgap (similar to 1.9 eV), differences were observed both in photocurrent intensity and sign. The latter changed with potential and wavelength in different ways for nanowires and films, revealing a different defect concentration in the t…
Atmosphere-induced change of microhardness and plasticity of C60 single crystals and polycrystalline films
1998
Abstract The effect of air exposure and visible light illumination on the microhardness, plasticity and dislocation mobility in the C60 single crystals was investigated. Microhardness values for defined structural states of the fullerene (pristine, oxygen-intercalated, photo-oxidized) are reported. It has been shown that oxygen intercalation in the fullerene lattice during air-aging in the dark results in the suppression of dislocation mobility. However, only a slight increase in the hardness of oxygenated samples was observed. A remarkable increase in the hardness and decrease in the plasticity of the C60 crystals under illumination-assisted air exposure was noted. Photochemical transforma…