Search results for "Cyclicity"
showing 4 items of 4 documents
Multiplicity of fixed points and growth of ε-neighborhoods of orbits
2012
We study the relationship between the multiplicity of a fixed point of a function g, and the dependence on epsilon of the length of epsilon-neighborhood of any orbit of g, tending to the fixed point. The relationship between these two notions was discovered before (Elezovic, Zubrinic, Zupanovic) in the differentiable case, and related to the box dimension of the orbit. Here, we generalize these results to non-differentiable cases introducing a new notion of critical Minkowski order. We study the space of functions having a development in a Chebyshev scale and use multiplicity with respect to this space of functions. With the new definition, we recover the relationship between multiplicity o…
Cyclicity of common slow–fast cycles
2011
Abstract We study the limit cycles of planar slow–fast vector fields, appearing near a given slow–fast cycle, formed by an arbitrary sequence of slow parts and fast parts, and where the slow parts can meet the fast parts in a nilpotent contact point of arbitrary order. Using the notion slow divergence integral, we delimit a large subclass of these slow–fast cycles out of which at most one limit cycle can perturb, and a smaller subclass out of which exactly one limit cycle will perturb. Though the focus lies on common slow–fast cycles, i.e. cycles with only attracting or only repelling slow parts, we present results that are valid for more general slow–fast cycles. We also provide examples o…
The cyclicity of the elliptic segment loops of the reversible quadratic Hamiltonian systems under quadratic perturbations
2004
Abstract Denote by Q H and Q R the Hamiltonian class and reversible class of quadratic integrable systems. There are several topological types for systems belong to Q H ∩ Q R . One of them is the case that the corresponding system has two heteroclinic loops, sharing one saddle-connection, which is a line segment, and the other part of the loops is an ellipse. In this paper we prove that the maximal number of limit cycles, which bifurcate from the loops with respect to quadratic perturbations in a conic neighborhood of the direction transversal to reversible systems (called in reversible direction), is two. We also give the corresponding bifurcation diagram.
Dynamics, Operator Theory, and Infinite Holomorphy
2014
The works on linear dynamics in the last two decades show that many, even quite natural, linear dynamical systems exhibit wild behaviour. Linear chaos and hypercyclicity have been at the crossroads of several areas of mathematics. More recently, fascinating new connections have started to be explored: operators on spaces of analytic functions, semigroups and applications to partial differential equations, complex dynamics, and ergodic theory. Related aspects of functional analysis are the study of linear operators on Banach spaces by using geometric, topological, and algebraic techniques, the works on the geometry of Banach spaces and Banach algebras, and the study of the geometry of a Bana…