Search results for "Cylinders"

showing 10 items of 14 documents

A Self-Contained Electro-Hydraulic Cylinder with Passive Load-Holding Capability

2019

Self-contained electro-hydraulic cylinders have the potential to replace both conventional hydraulic systems and the electro-mechanical counterparts enhancing energy efficiency, plug-and-play installation, and reduced maintenance. Current commercial solutions of this technology are limited and typically tailor-made, whereas the research emphasis is primarily on cost efficiency and power applications below five [kW]. Therefore, there is the need of developing more flexible systems adaptable to multiple applications. This research paper offers a contribution in this regard. It presents an electro-hydraulic self-contained single-rod cylinder with passive load-holding capability, sealed tank, c…

0209 industrial biotechnologyControl and OptimizationComputer science020209 energyEnergy Engineering and Power TechnologyComputerApplications_COMPUTERSINOTHERSYSTEMS02 engineering and technologySelf-contained cylinderslcsh:TechnologyAutomotive engineeringCylinder (engine)law.invention020901 industrial engineering & automationlawload-holding valves0202 electrical engineering electronic engineering information engineeringCylinderElectrical and Electronic EngineeringHydraulic machineryEngineering (miscellaneous)Renewable Energy Sustainability and the EnvironmentOscillationlcsh:TmodelingSelf-contained cylinders; electro-hydraulic systems; load-holding valves; modelingPower (physics)VDP::Teknologi: 500ActuatorEnergy (signal processing)electro-hydraulic systemsEnergy (miscellaneous)
researchProduct

A Comparison Study of a Novel Self-Contained Electro-Hydraulic Cylinder versus a Conventional Valve-Controlled Actuator—Part 2: Energy Efficiency

2019

This research paper presents the second part of a comparative analysis of a novel self-contained electro-hydraulic cylinder with passive load-holding capability against a state of the art, valve-controlled hydraulic system that is typically used in load-carrying applications. After addressing the control design and motion performance in the first part of the study, the comparison is now focused on the systems&rsquo

0209 industrial biotechnologyControl and OptimizationComputer scienceHydraulicspassive load-holdingenergy recoveryComputerApplications_COMPUTERSINOTHERSYSTEMS02 engineering and technologyAutomotive engineeringlaw.invention020901 industrial engineering & automationlinear actuatorslawload-carrying applications0202 electrical engineering electronic engineering information engineeringHydraulic machineryenergy efficiencyEnergy recoveryVDP::Teknologi: 500::Materialteknologi: 520020208 electrical & electronic engineeringEnergy consumptionLinear actuatorFluid powerControl and Systems Engineeringproportional directional control valvesActuatorself-contained cylinderselectro-hydraulic systemsEfficient energy useActuators
researchProduct

A Comparison Study of a Novel Self-Contained Electro-Hydraulic Cylinder versus a Conventional Valve-Controlled Actuator—Part 1: Motion Control

2019

This research paper presents the first part of a comparative analysis of a novel self-contained electro-hydraulic cylinder with passive load-holding capability against a state of the art, valve-controlled actuation system that is typically used in load-carrying applications. The study is carried out on a single-boom crane with focus on the control design and motion performance analysis. First, a model-based design approach is carried out to derive the control parameters for both actuation systems using experimentally validated models. The linear analysis shows that the new drive system has higher gain margin, allowing a considerably more aggressive closed-loop position controller. Several b…

0209 industrial biotechnologyControl and OptimizationSettling timeComputer sciencepassive load-holding020209 energy02 engineering and technologyactive damping020901 industrial engineering & automationlinear actuatorsmodeling and simulationControl theoryPosition (vector)load-carrying applications0202 electrical engineering electronic engineering information engineeringOvershoot (signal)feedback control systemsLinear actuatorMotion controlControl and Systems EngineeringRise timeproportional directional control valvesActuatorself-contained cylinderselectro-hydraulic systemslinear control designActuators
researchProduct

Application of Model Predictive Control in Discrete Displacement Cylinders to Drive a Knuckle Boom Crane

2018

In this paper, two Discrete Displacement Cylinders (DDCs) are used to drive the boom of a knuckle boom crane. DDCs operate by connecting one of several available pressure levels to each chamber in order to produce different forces. A trade-off exists with such systems, between the accuracy of tracking and energy dissipation due to switching. A popular way to approach this problem is a Force Shifting Algorithm (FSA). However, in this paper, the trade-off is managed by use of a Model Predictive Control (MPC) algorithm. The tracking accuracy and energy efficiency of the MPC and FSA strategies for DDCs are compared to a PID strategy for standard cylinders. The comparison is obtained by use of a…

Computer sciencePID controllerDissipationKnuckle Boom CraneBoomDisplacement (vector)Model predictive controlKnucklemedicine.anatomical_structureControl theoryDiscrete Displacement CylindersmedicineModel predictive controlEnergy (signal processing)Efficient energy use
researchProduct

A method for smoothly disengaging the load-holding valves of energy-efficient electro-hydraulic systems

2020

A novel self-contained, electro-hydraulic cylinder drive capable of passive load-holding, four-quadrant operations, and energy recovery was presented recently and implemented successfully. This solution improved greatly the energy efficiency and motion control in comparison to state-of-the-art, valve-controlled systems typically used in mobile or offshore applications. The passive load-holding function was realized by two pilot-operated check valves placed on the cylinder ports, where their pilot pressure is selected by a dedicated on/off electro valve. These valves can maintain the actuator position without consuming energy, as demonstrated on a single-boom crane. However, a reduced drop o…

Computer sciencePressure controlElectro-hydraulic systemsKinematicsLinear actuatorSelf-contained cylindersMotion controlAutomotive engineeringlaw.inventionCylinder (engine)PistonVDP::Teknologi: 500Energy efficiencylawLinear actuatorsPassive load holdingActuatorLoad carrying applicationsEnergy recoveriesEfficient energy use
researchProduct

Behavior in compression of concrete cylinders externally wrapped with basalt fibers

2015

Abstract This paper gives additional information on the use of new class of composites constituted by Basalt Fiber Reinforced Polymer (BFRP) bonded with epoxy resin to concrete specimens as an alternative confinement material for compressed concrete members with respect to carbon or glass fibers. From the experimental point of view, concrete cylinders are wrapped with continuous fibers, in the form of sheets, applying both full and partial discrete wrapping with BFRP straps, and then tested in compression. For comparison, few other concrete cylinders are wrapped with Carbon Fiber Reinforced Polymer (CFRP) sheets and tested in compression. The number and type of plies (full or partial wrappi…

Concrete cylinders; Basalt fibers; Carbon fibers; Monotonic tests; Cyclic testsMaterials scienceGlass fiberIndustrial and Manufacturing EngineeringConcrete cylindersBrittlenessMonotonic testCarbon fibersFiberComposite materialCarbon fiber reinforced polymerCyclic testsBasalt fiberbusiness.industryMechanical EngineeringStructural engineeringEpoxyCompression (physics)Basalt fibersSettore ICAR/09 - Tecnica Delle CostruzioniSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiCompressive strengthMechanics of Materialsvisual_artBasalt fiberCeramics and Compositesvisual_art.visual_art_mediumCarbon fiberConcrete cylinderbusinessMonotonic testsComposites Part B: Engineering
researchProduct

Effectiveness of BFRP confinement on the compressive behaviour of clay brick masonry cylinders

2020

Abstract This paper presents the results of an experimental and analytical study on the compressive behaviour of small clay brick masonry cylinders reinforced with a basalt fibre reinforced polymer (BFRP) composite. Fourteen cylinders, manufactured using two assembling schemes and confined using either one or two layers of BFRP grids, were tested under monotonic compression loading. Traditional strain measuring systems were integrated with digital image correlation (DIC) technique. The BFRP confined masonry cylinders showed a ductile behaviour characterised by a softening branch of the stress–strain curve. The experimental strains, strength, and full stress–strain curves were modelled using…

CylindersDigital image correlationMaterials sciencebusiness.industryComposite numberDigital image correlation02 engineering and technologyMasonry021001 nanoscience & nanotechnologyCompression (physics)Settore ICAR/09 - Tecnica Delle Costruzioni020303 mechanical engineering & transports0203 mechanical engineeringCeramics and CompositesClay brickBFRPComposite materialMasonry0210 nano-technologybusinessSofteningConfinementCivil and Structural EngineeringComposite Structures
researchProduct

Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein-lectin interactions

2011

We demonstrate the supramolecular bioconjugation of concanavalin A (Con A) protein with glycoenzyme horseradish peroxidase (HRP) inside single nanopores, fabricated in heavy ion tracked polymer membranes. Firstly, the HRP-enzyme was covalently immobilized on the inner wall of the pores using carbodiimide coupling chemistry. The immobilized HRP-enzyme molecules bear sugar (mannose) groups available for the binding of Con A protein. Secondly, the bioconjugation of Con A on the pore wall was achieved through its biospecific interactions with the mannose residues of the HRP enzyme. The immobilization of biomolecules inside the nanopore leads to the reduction of the available area for ionic tran…

NanometresSynthetic membraneTransport equationNanoporesInformation processingRectification propertiesCylinders (shapes)Materials TestingConcanavalin AGeneral Materials ScienceFunctional polymersConical nanoporeschemistry.chemical_classificationChemistryBlocking effectElectric rectifiersComputer simulationEnzymesData processingNanoporeEnzyme moleculesFunctional polymersMolecular imprintingPorosityBio-molecularInner wallsMolecular imprintingSupramolecular chemistryNanotechnologyHorseradish peroxidaseIonic transportsNanocapsulesBio-conjugationMoleculeParticle SizeAqueous solutionsGlycoproteinsBiomoleculesBioconjugationBiomoleculeNanostructuresModel simulationChemical engineeringModels ChemicalPolymer membraneConductance stateFISICA APLICADABiospecific interactionSynthetic polymersSugarsSupramolecular chemistryPore wallCarbodiimide-coupling chemistry
researchProduct

BFRP grid confined clay brick masonry cylinders under axial compression: Experimental results

2018

The use of composite materials for retrofitting of masonry structures has received great attention during the last two decades. For masonry buildings there are several advantages in using composite materials. Traditional techniques that were largely used and investigated in the past, may be inadequate in seismic areas where the added mass could increase seismic actions. Moreover, for historical and architectural heritage structures, the compatibility, sustainability and reversibility of the intervention is a key factor for the selection of the most appropriate strengthening system. Many investigations have shown that fibre reinforced polymers (FRP) can be effectively used to induce a passiv…

Settore ICAR/09 - Tecnica Delle CostruzioniMasonry columnscylindersBasalt fibre reinforced polymersBasalt fibre reinforced polymerMasonry columnBFRPStrengthening and RepairStrengthening and Repair.
researchProduct

Digital Hydraulic Technology for Linear Actuation:A State of the Art Review

2020

This paper analyses the current state of the art in linear actuation with digital hydraulics. Based on the differences in their aims the paper partitions the area into four actuation concepts – parallel valve solutions, single switching valve solutions, multi-chamber cylinders, and multi-pressure cylinders. The concepts are evaluated based on accuracy and smoothness of motion, switching load, reliability, efficiency and the number of components required.

SmoothnessHydraulicsComputer scienceMechanical EngineeringDigital hydraulicsGeneral Physics and AstronomyMechanical engineeringState of the art reviewState of the artGeneralLiterature_MISCELLANEOUSlaw.inventionComputer Science::OtherReliability (semiconductor)lawMulti-chamber cylindersState (computer science)Switching Valves
researchProduct