Search results for "Cytosol"

showing 10 items of 265 documents

Exploitation of Microtubule Cytoskeleton and Dynein during Parvoviral Traffic toward the Nucleus

2003

ABSTRACT Canine parvovirus (CPV), a model virus for the study of parvoviral entry, enters host cells by receptor-mediated endocytosis, escapes from endosomal vesicles to the cytosol, and then replicates in the nucleus. We examined the role of the microtubule (MT)-mediated cytoplasmic trafficking of viral particles toward the nucleus. Immunofluorescence and immunoelectron microscopy showed that capsids were transported through the cytoplasm into the nucleus after cytoplasmic microinjection but that in the presence of MT-depolymerizing agents, viral capsids were unable to reach the nucleus. The nuclear accumulation of capsids was also reduced by microinjection of an anti-dynein antibody. More…

Parvovirus CaninevirusesImmunoelectron microscopyImmunologyDyneinActive Transport Cell Nucleusmacromolecular substancesMicrotubulesMicrobiologyMotor proteinCapsidCytosolMicrotubuleVirologymedicineAnimalsCytoskeletonCytoskeletonCell NucleusbiologyDyneinsbiochemical phenomena metabolism and nutritionVirus-Cell InteractionsCell biologyMicroscopy ElectronTubulinmedicine.anatomical_structureCytoplasmInsect ScienceCatsbiology.proteinNucleusJournal of Virology
researchProduct

Htid-1, the human homolog of the Drosophila melanogaster l(2)tid tumor suppressor, defines a novel physiological role of APC.

2007

Htid-1, the human counterpart of the Drosophila tumor suppressor gene lethal(2)tumorous imaginal discs (l(2)tid) encodes three splice forms translated into three cytosolic - Tid50, Tid48 and Tid46 - and three mitochondrial - Tid43, Tid40 and Tid38 - proteins. Here we provide evidence for the association of the endogenous Tid50/Tid48 proteins with the adenomatous polyposis coli (APC) tumor suppressor in normal colon epithelium, colorectal cancer cells and mouse NIH3T3 fibroblasts. Using the Glutathione S-transferase binding assay we show that the N-terminal region including the Armadillo domain (ARM) of APC is sufficient to bind the Tid molecules. Using immunoprecipitation and confocal micro…

Patched ReceptorsBeta-cateninTumor suppressor geneAdenomatous polyposis coliAdenomatous Polyposis Coli ProteinReceptors Cell SurfacePlasma protein bindingLigandsMitochondrial ProteinsMiceCytosolCell Line TumorAnimalsDrosophila ProteinsGuanine Nucleotide Exchange FactorsHumansIntestinal MucosaActinHeat-Shock Proteinsbeta CateninPatched ReceptorsbiologySequence Homology Amino AcidGene Expression ProfilingTumor Suppressor ProteinsWnt signaling pathwayGene Expression Regulation DevelopmentalCell BiologyHSP40 Heat-Shock ProteinsActin cytoskeletonMolecular biologyCell biologyMitochondriaDrosophila melanogasterras GTPase-Activating ProteinsMultiprotein Complexesbiology.proteinNIH 3T3 CellsRho Guanine Nucleotide Exchange FactorsProtein BindingCellular signalling
researchProduct

Failure of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) to inhibit soluble guanylyl cyclase in rat ventricular cardiomyocytes

1999

The effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase (sGC), were investigated in aortic rings and ventricular cardiomyocytes from rats. The production of cyclic GMP was stimulated by NO•-donors or carbachol. Additionally, the effects of ODQ were studied in cytosolic extracts from both tissues in which the cyclic GMP production was stimulated by S-nitroso-N-acetylpenicillamine (SNAP). In endothelium-intact aortic rings, SNAP (100 μM), 2,2′-(hydroxynitrosohydrazino)bis-ethanamine (DETA NONOate; 100 μM), or carbachol (10 μM) increased cyclic GMP levels about 4 fold. These effects were abolished by ODQ (50 μM). In cardiomyocytes, SNAP (100 μ…

Pharmacologymedicine.medical_specialtyAortaCarbacholChemistrySnapIn vitroNitric oxideCytosolchemistry.chemical_compoundEndocrinologyMyoglobinInternal medicinemedicine.arterymedicineSoluble guanylyl cyclasemedicine.drugBritish Journal of Pharmacology
researchProduct

Effect of nimodipine on rheologic parameters in patients with chronic cerebrovascular disease

1992

Abstract Sixteen patients with chronic cerebrovascular disease were treated with a monotherapeutic regimen of nimodipine 30 mg orally three times a day. At baseline and after 45 and 90 days of therapy, the patients' whole blood filterability, erythrocyte membrane fluidity, red blood cell membrane protein lateral mobility, and red blood cell Ca 2+ content (total and cytosolic) were evaluated. After 45 days, an increase in whole blood filterability and a decrease in the cytosolic red cell Ca 2+ content was seen. At the end of treatment, whole blood filterability, erythrocyte membrane fluidity, and red cell membrane protein lateral mobility had increased, compared with baseline values, while t…

Pharmacologymedicine.medical_specialtyChemotherapyRed Cellbusiness.industrymedicine.medical_treatmentchemistry.chemical_elementCalciumCytosolRed blood cellEndocrinologymedicine.anatomical_structureMembrane proteinchemistryInternal medicineAnesthesiaMedicinePharmacology (medical)businessNimodipinemedicine.drugWhole bloodCurrent Therapeutic Research
researchProduct

Pho85 and PI(4,5)P(2) regulate different lipid metabolic pathways in response to cold

2019

Lipid homeostasis allows cells to adjust membrane biophysical properties in response to changes in environmental conditions. In the yeast Saccharomyces cerevisiae, a downward shift in temperature from an optimal reduces membrane fluidity, which triggers a lipid remodeling of the plasma membrane. How changes in membrane fluidity are perceived, and how the abundance and composition of different lipid classes is properly balanced, remain largely unknown. Here, we show that the levels of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], the most abundant plasma membrane phosphoinositide, drop rapidly in response to a downward shift in temperature. This change triggers a signaling cascade trans…

Phosphatidylinositol 45-DiphosphateSaccharomyces cerevisiae ProteinsMembrane FluiditySphingoid basesAcclimatizationOrm2PhospholipidSaccharomyces cerevisiaePhosphoinositideTriacylglycerideSphingolipidArticle03 medical and health scienceschemistry.chemical_compoundGlycogen Synthase Kinase 3Gene Expression Regulation FungalMembrane fluidityLow temperatureInositolPhosphatidylinositolProtein kinase AMolecular Biology1-IP7030304 developmental biology0303 health sciencesChemistry030302 biochemistry & molecular biologyCell MembraneCell BiologyLipid MetabolismSphingolipidCyclin-Dependent KinasesCell biologyTORC2-Pkh1-Ypk1 signaling moduleCold TemperatureCytosolMetabolic pathwayPhospholipidMetabolic Networks and PathwaysSignal Transduction
researchProduct

Control of oxidative metabolism in volume-overloaded rat hearts: effects of different lipid substrates.

1994

The relationship between intracellular energy parameters and myocardial O2 consumption (VO2) was studied in control and volume-overloaded hearts perfused with different lipid substrates and over a range of left ventricular work loads. In control hearts, a unique linear relationship between log of cytosolic [ATP]/[ADPf].[Pi] (where [ADPf] is concentration of free ADP) and myocardial VO2 was observed between low and high work loads for both fatty acids studied. In volume-overloaded hearts perfused in the presence of exogenous palmitate, the slope of the relationship between log [ATP]/[ADPf].[Pi] and myocardial VO2 was considerably depressed. It would seem that, under these conditions, much o…

PhosphocreatinePhysiologyRespiratory chainPalmitic AcidCardiomegalyPalmitic AcidsIn Vitro TechniquesVentricular Function LeftPhosphatesAdenosine TriphosphateOxygen ConsumptionPhysiology (medical)RespirationPiAnimalsRespiratory systemRats WistarATP synthasebiologyMyocardiumSubstrate (chemistry)HeartCreatineNADRatsAdenosine DiphosphateCytosolBiochemistrybiology.proteinCaprylatesCardiology and Cardiovascular MedicineEnergy MetabolismIntracellularThe American journal of physiology
researchProduct

Bax Inhibitor-1-mediated Ca2+ leak is decreased by cytosolic acidosis

2013

Bax Inhibitor-1 (BI-1) is an evolutionarily conserved six-transmembrane domain endoplasmic reticulum (ER)-localized protein that protects against ER stress-induced apoptotic cell death. This function is closely connected to its ability to lower steady-state ER Ca2+ levels. Recently, we elucidated BI-1's Ca(2+)-channel pore in the C-terminal part of the protein and identified the critical amino acids of its pore. Based on these insights, a Ca(2+)-channel pore-dead mutant BI-1 (BI-1(D213R)) was developed. We determined whether BI-1 behaves as a bona fide H+/Ca2+ antiporter or as an ER Ca(2+)-leak channel by investigating the effect of pH on unidirectional Ca(2+)-efflux rates. At pH 6.8, wild-…

PhysiologyAntiporterMutantApoptosisPeptideEndoplasmic ReticulumCell LineMiceAspartic acidAnimalsHumansMolecular BiologyCalcimycinchemistry.chemical_classificationBAX inhibitor 1ChemistryEndoplasmic reticulumMembrane ProteinsCell BiologyHydrogen-Ion ConcentrationProtein Structure TertiaryAmino acidCell biologyCytosolBiophysicsCalciumAcidosisApoptosis Regulatory ProteinsPeptidesHeLa CellsCell Calcium
researchProduct

Calcium- and potassium-permeable plasma membrane transporters are activated by copper inArabidopsisroot tips: linking copper transport with cytosolic…

2012

Transition metals such as copper can interact with ascorbate or hydrogen peroxide to form highly reactive hydroxyl radicals (OH . ), with numerous implications to membrane transport activity and cell metabolism. So far, such interaction was described for extracellular (apoplastic) space but not cytosol. Here, a range of advanced electrophysiological and imaging techniques were applied to Arabidopsis thaliana plants differing in their copper-transport activity: Col-0, high-affinity copper transporter COPT1-overexpressing (C1 OE ) seedlings, and T-DNA COPT1 insertion mutant ( copt1 ). Low Cu concentrations (10 μ m) stimulated a dose-dependent Gd 3+ and verapamil sensitive net Ca 2+ influx in …

PhysiologyChemistryRadicalCopper toxicitychemistry.chemical_elementPlant ScienceMembrane transportmedicine.diseasePeroxideCopperCytosolchemistry.chemical_compoundBiochemistrymedicineBiophysicsHydroxyl radicalHydrogen peroxidePlant, Cell & Environment
researchProduct

Early signaling network in tobacco cells elicited with methyl jasmonate and cyclodextrins.

2012

We analyze, for the first time, the early signal transduction pathways triggered by methyl jasmonate (MJ) and cyclodextrins (CDs) in tobacco (Nicotiana tabacum) cell cultures, paying particular attention to changes in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)), the production of hydrogen peroxide (H(2)O(2)) and nitric oxide (NO), and late events like the induction of capsidiol. Our data indicate that MJ and CDs trigger a [Ca(2+)](cyt) rise promoted by Ca(2+) influx through Ca(2+)-permeable channels. The joint presence of MJ and CDs provokes a first increase in [Ca(2+)](cyt) similar to that observed in MJ-treated cells, followed by a second peak similar to that found in the presence…

PhysiologyNicotiana tabacum[SDV]Life Sciences [q-bio]nicotiana tabacumPlant ScienceCyclopentanesAcetatesNitric OxideCapsidiolchemistry.chemical_compoundCytosolOnium CompoundsPlant CellsTobaccoGeneticsProtein phosphorylationOxylipinsPhosphorylationCells CulturedRespiratory BurstCyclodextrinsMethyl jasmonatebiologyMolecular StructureHydrogen Peroxidemethyl jasmonatebiology.organism_classificationcell culturesRespiratory burstCulture MediaCytosolEGTABiochemistrychemistry[SDE]Environmental SciencesBiophysicsPhosphorylationCalciumSesquiterpenesSignal TransductionPlant physiology and biochemistry : PPB
researchProduct

Subcellular distribution of choline acetyltransferase by immunogold electron microscopy in non-neuronal cells: Placenta, airways and murine embryonic…

2012

Abstract Aims Acetylcholine is synthesized in more or less all mammalian cells. However, little is known about the subcellular location of acetylcholine synthesis. Therefore, in the present experiments the subcellular location of the synthesizing enzyme choline acetyltransferase (ChAT) was investigated by anti-ChAT immunogold electron microscopy in human placenta and airways as well as in a murine embryonic stem cell line (CGR8 cell line). Main methods Human tissue was obtained as so-called surplus tissue (after delivery/surgical removal because of lung tumor); the CGR8 stem cell line was cultured under standard conditions. For human tissue a monoclonal mouse anti-ChAT antibody (ab) was use…

PlacentaeducationBronchiRespiratory MucosaBiologyGeneral Biochemistry Genetics and Molecular BiologyCell LineCholine O-AcetyltransferaseCell membraneMicePregnancyCaveolaeMacrophages Alveolarmental disordersmedicineAnimalsHumansGeneral Pharmacology Toxicology and PharmaceuticsNuclear membraneCells CulturedEmbryonic Stem Cellshealth care economics and organizationsEpithelial CellsGeneral MedicineImmunogold labellingImmunohistochemistryCholine acetyltransferaseMolecular biologyCellular StructureshumanitiesTrophoblastsCell biologyMicroscopy ElectronCytosolCell nucleusmedicine.anatomical_structureCell cultureFemaleLife Sciences
researchProduct