Search results for "DAMP"
showing 10 items of 260 documents
Vibration control for adjacent structures using local state information
2014
In this paper, a novel strategy for structural vibration control of multi-structure systems is presented. This strategy pays particular attention to mitigating negative interstructure interactions. Moreover, it is based on recent advances in static output–feedback control, which make possible the efficient computation of decentralized velocity-feedback controllers by solving a single-step optimization problem with Linear Matrix Inequality constraints. To illustrate the main ideas, a local velocity-feedback energy-to-peak controller is designed for the seismic protection of a two-building system. This controller is remarkably effective and extremely simple. Moreover, it can also be implement…
Innovative modeling of tuned liquid column damper controlled structures
2016
In this paper a different formulation for the response of structural systems controlled by Tuned Liquid Column Damper (TLCD) devices is developed, based on the mathematical tool of fractional calculus. Although the increasing use of these devices for structural vibration control, it has been demonstrated that existing model may lead to inaccurate prediction of liquid motion, thus reflecting in a possible imprecise description of the structural response. For this reason the recently proposed fractional formulation introduced to model liquid displacements in TLCD devices, is here extended to deal with TLCD controlled structures under base excitations. As demonstrated through an extensive expe…
Application of viscoelastic hybrid models to vehicle crash simulation
2011
This paper presents an application of physical models composed of springs, dampers and masses in various arrangements to simulate a real car collision with a rigid pole. Equations of motion of these systems are being established and subsequently solutions to obtain differential equations are formulated. We begin with a general model consisting of two masses, two springs and two dampers and illustrate its application to modelling fore-frame and aft-frame of a vehicle. Hybrid models, as being particular cases of two-mass–spring–damper model, are elaborated afterwards and their application to predict results of real collision is shown. Models’ parameters are obtained by fitting their response …
Semiactive control for floating offshore wind turbines subject to aero-hydro dynamic loads
2011
Wind and wave dynamic loads might cause undesirable vibrations that affect the structure integrity and system performance of floating offshore wind turbines. This paper addresses the problem of dynamic load mitigation by using semiactive control techniques with the tuned liquid column dampers placed on the turbine’s tower. The control law is formulated based on the mixed H2/H∞ methods for ensuring the system stability and reliability. Furthermore, the proposed controller only uses output feedback so as to avoid the dependence on the knowledge of the states of the system. Peer Reviewed
Combining TMD and TLCD: analytical and experimental studies
2017
Abstract In these years several research efforts have been focused on developing efficient and reliable control devices for mitigating the structural response of tall and lightly damped buildings in case of strong dynamic excitations, such as wind and earthquake ones. In this context, Tuned Mass Dampers (TMDs) represent probably the most common control device due to their high control performances. On the other hand, Tuned Liquid Column Dampers (TLCDs) are increasingly becoming more popular because of some of their attractive features, cost-effectiveness among the others, even though they yield slightly less control performance compared to the classical TMDs. Aiming at combining the benefic…
A mixed H<inf>2</inf>/H<inf>&#x221E;</inf>-based semiactive control for vibration mitigation in flexible structures
2009
In this paper, we address this problem through the design of a semiactive controller based on the mixed H 2 /H ∞ control theory. The vibrations caused by the seismic motions are mitigated by a semiactive damper installed in the bottom of the structure. It is meant by semiactive damper, a device that absorbs but cannot inject energy into the system. Sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller that guarantees asymptotic stability and a mixed H 2 /H ∞ performance is then developed. An algorithm is proposed to handle the semiactive nature of the actuator. The performance of the controller is experimentally evalu…
RESPONSE OF POSIDONIA OCEANICA TO WAVE MOTION IN SHALLOW-WATERS - PRELIMINARY EXPERIMENTAL RESULTS
2011
Aim of the present work is to contribute to the knowledge about the interaction between the flow induced by wave and the aquatic vegetation. More in details the results of preliminary tests of an experimental laboratory investigation about the response of a Posidonia Oceanica meadow to wave motion in shallow waters is reported. A wide attention was posed to the behavior of a synthetic plants with plastic material. To this aim an image acquisition technique was used to analyze and compare the movement of both the artificial plant and the real one. The experiments carried out about the interaction between the artificial meadow and the waves showed a significant wave dumping, in particular in …
Semiactive Backstepping Control for Vibration Reduction in a Structure with Magnetorheological Damper Subject to Seismic Motions
2009
The use of magnetorheological (MR) dampers for mitigating vibrations caused by seismic motions in civil engineering structures has attracted much interest in the scientific community because of the advantages of this class of device. It is known that MR dampers can generate high damping forces with low energy requirements and low cost of production. However, the complex dynamics that characterize MR dampers make difficult the control design for achieving the vibration reduction goals in an efficient manner. In this article, a semiactive controller based on the backstepping technique is proposed. The controller was applied to a three-story building with an MR damper at its first floor subje…
Computer active control of damping fluid of a racing superbike suspension scheme for road safety improvement spin-off
2008
This paper describes in detail a computational investigation of a newly-conceived scheme of hydraulic active racing motorcycle suspension and its design application based on a computer-aided control of damping fluid. Through ad hoc tests on a full-scale model setup and the theoretical approach of a non linear 8th-order suspension scheme, this study gives enhancement of the damping fluid active control on the feedback branch of the entire control system for significant improvement of the suspension response to typical road inputs. Briefly, the fluid flow in suspension dampers - generated through well-suited high-pressure hydraulic circuit - shall be conveniently controlled in direction and m…
Mathematical modeling of vehicle frontal crash by a double spring-mass-damper model
2013
This paper presents development of a mathematical model to represent the real vehicle frontal crash scenario. The vehicle is modeled by a double spring-mass-damper system. The front mass m1 represents the chassi of the vehicle and rear mass m2 represents the passenger compartment. The physical parameters of the model (Stiffness and dampers) are estimated using Nonlinear least square method (Levenberg-Marquart algorithm) by curve fitting the response of a double spring-mass-damper system to the experimental displacement data from the real vehicle crash. The model is validated by comparing the results from the model with the experimental results from real crash tests available.