Search results for "DECOMPOSITION"
showing 10 items of 766 documents
Decomposition numbers and local properties
2020
Abstract If G is a finite group and p is a prime, we give evidence that the p-decomposition matrix encodes properties of p-Sylow normalizers.
On defects of characters and decomposition numbers
2017
We propose upper bounds for the number of modular constituents of the restriction modulo [math] of a complex irreducible character of a finite group, and for its decomposition numbers, in certain cases.
OMA: From Research to Engineering Applications
2021
Ambient vibration modal identification, also known as Operational Modal Analysis (OMA), aims to identify the modal properties of a structure based on vibration data collected when the structure is under its operating conditions, i.e., when there is no initial excitation or known artificial excitation. This method for testing and/or monitoring historical buildings and civil structures, is particularly attractive for civil engineers concerned with the safety of complex historical structures. However, in practice, not only records of external force are missing, but uncertainties are involved to a significant extent. Hence, stochastic mechanics approaches are needed in combination with the iden…
Bridges, channels and Arnold's invariants for generic plane curves
2002
Abstract We define sums of plane curves that generalize the idea of connected sum and show how Arnol'd's invariants behave with respect to them. We also consider the inverse process of decomposition of a curve and as an application, obtain a new method that reduces considerably the amounts of computation involved in the calculation of Arnold's invariants.
Decompositions of Weakly Compact Valued Integrable Multifunctions
2020
We give a short overview on the decomposition property for integrable multifunctions, i.e., when an &ldquo
Algebraic aspects and coherence conditions for conjoined and disjoined conditionals
2019
We deepen the study of conjoined and disjoined conditional events in the setting of coherence. These objects, differently from other approaches, are defined in the framework of conditional random quantities. We show that some well known properties, valid in the case of unconditional events, still hold in our approach to logical operations among conditional events. In particular we prove a decomposition formula and a related additive property. Then, we introduce the set of conditional constituents generated by $n$ conditional events and we show that they satisfy the basic properties valid in the case of unconditional events. We obtain a generalized inclusion-exclusion formula and we prove a …
Qualitative analysis of matrix splitting methods
2001
Abstract Qualitative properties of matrix splitting methods for linear systems with tridiagonal and block tridiagonal Stieltjes-Toeplitz matrices are studied. Two particular splittings, the so-called symmetric tridiagonal splittings and the bidiagonal splittings, are considered, and conditions for qualitative properties like nonnegativity and shape preservation are shown for them. Special attention is paid to their close relation to the well-known splitting techniques like regular and weak regular splitting methods. Extensions to block tridiagonal matrices are given, and their relation to algebraic representations of domain decomposition methods is discussed. The paper is concluded with ill…
QR-Factorization Algorithm for Computed Tomography (CT): Comparison With FDK and Conjugate Gradient (CG) Algorithms
2018
[EN] Even though QR-factorization of the system matrix for tomographic devices has been already used for medical imaging, to date, no satisfactory solution has been found for solving large linear systems, such as those used in computed tomography (CT) (in the order of 106 equations). In CT, the Feldkamp, Davis, and Kress back projection algorithm (FDK) and iterative methods like conjugate gradient (CG) are the standard methods used for image reconstruction. As the image reconstruction problem can be modeled by a large linear system of equations, QR-factorization of the system matrix could be used to solve this system. Current advances in computer science enable the use of direct methods for…
Monte Carlo simulation of polymeric materials: Recent progress
1993
Monte Carlo simulations are presented, dealing with phase diagrams of block copolymer melts and polymer blends, including the unmixing kinetics of the latter systems. The theoretical background is briefly reviewed: Ginzburg-type criteria reveal that in mixtures of long flexible polymers a “crossover” occurs from mean-field behavior (as described by Flory-Huggins theory) to nonclassical Ising-type behavior, and spinodal curves can be unusually sharp. This crossover is demonstrated by large scale simulations of the bond fluctuation model, and it is also shown that for symmetric mixtures the critical temperature scales with chain length as Tc α N. The prefactor in this relation is distinctly s…
First Look at Two-Loop Five-Gluon Scattering in QCD.
2018
We compute the leading colour contributions to five-gluon scattering at two loops in massless QCD. The integrands of all independent helicity amplitudes are evaluated using d-dimensional generalised unitarity cuts and finite field reconstruction techniques. Numerical evaluation of the integral basis is performed with sector decomposition methods to obtain the first benchmark results for all helicity configurations of a 2 to 3 scattering process in QCD.