Search results for "DELIVERY SYSTEM"
showing 10 items of 367 documents
Buccal Delivery of Methimazole as an Alternative Means for Improvement of Drug Bioavailability: Permeation Studies and Matrix System Design
2012
The aim of this study was to investigate the potential for systemic administration of Methimazole (MMI) through the buccal mucosa as an alternative route for drug delivery. Considering that the most important restriction in buccal drug delivery could be the low permeability of the mucosa, the ability of MMI to cross the mucosal barrier was assessed. Permeation of MMI through porcine buccal mucosa was investigated ex vivo using Franz type diffusion cells, buffer solution simulating saliva or natural human saliva as donor phase. The collected data suggested that buccal mucosa does not hinder MMI diffusion and the drug crosses the membrane (J(s) = 0.068 mg cm(-2) h(-1) and K(p) = 0.065 cm h(-1…
Synaptosomes: new vesicles for neuronal mitochondrial transplantation
2021
Abstract Background Mitochondrial dysfunction is a critical factor in the onset and progression of neurodegenerative diseases. Recently, mitochondrial transplantation has been advised as an innovative and attractive strategy to transfer and replace damaged mitochondria. Here we propose, for the first time, to use rat brain extracted synaptosomes, a subcellular fraction of isolated synaptic terminal that contains mitochondria, as mitochondrial delivery systems. Results Synaptosome preparation was validated by the presence of Synaptophysin and PSD95. Synaptosomes were characterized in terms of dimension, zeta potential, polydispersity index and number of particles/ml. Nile Red or CTX-FITCH la…
Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease
2019
[EN] Silica mesoporous microparticles loaded with both rhodamine B fluorophore (S1) or hydrocortisone (S2), and capped with an olsalazine derivative, are prepared and fully characterized. Suspensions of Si and S2 in water at an acidic and a neutral pH show negligible dye/drug release, yet a notable delivery took place when the reducing agent sodium dithionite is added because of hydrolysis of an azo bond in the capping ensemble. Additionally, olsalazine fragmentation induced 5-aminosalicylic acid (5-ASA) release. In vitro digestion models show that S1 and S2 solids are suitable systems to specifically release a pharmaceutical agent in the colon. In vivo pharmacokinetic studies in rats show …
Polymeric Nanocarriers for Magnetic Targeted Drug Delivery: Preparation, Characterization, and in Vitro and in Vivo Evaluation
2013
In this paper the preparation of magnetic nano- carriers (MNCs), containing superparamagnetic domains, is reported, useful as potential magnetically targeted drug delivery systems. The preparation of MNCs was performed by using the PHEA-IB-p(BMA) graft copolymer as coating material through the homogenization−solvent evaporation method. Magnetic and nonmagnetic nanocarriers containing flutamide (FLU-MNCs) were prepared. The prepared nanocarriers have been exhaustively characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and magnetic measurements. Biological evaluation was performed by in vitro cytotoxicity and cell uptake tests and in vivo biodistribution …
Mitochondria as the target for mildronate's protective effects in azidothymidine (AZT)-induced toxicity of isolated rat liver mitochondria
2008
Previously mildronate, an aza-butyrobetaine derivative, was shown to be a cytoprotective drug, through its mechanism of action of inhibition of carnitine palmitoyltransferase-1, thus protecting mitochondria from long-chain fatty acid accumulation and subsequent damage. Recently in an azidothymidine (AZT)-induced cardiotoxicity model in vivo (in mice), we have found mildronate's ability of protecting heart tissue from nuclear factor kappaB abnormal expression. Preliminary data also demonstrate cerebro- and hepatoprotecting properties of mildronate in AZT-toxicity models. We suggest that mildronate may target its action predominantly to mitochondria. The present study in isolated rat liver mi…
Magnetically-actuated drug delivery device (MADDD) for minimally invasive treatment of prostate cancer: An in vivo animal pilot study
2017
Background The vast majority of prostate cancer presents clinically localized to the prostate without evidence of metastasis. Currently, there are several modalities available to treat this particular disease. Despite radical prostatectomy demonstrating a modest prostate cancer specific mortality benefit in the PIVOT trial, several novel modalities have emerged to treat localized prostate cancer in patients that are either not eligible for surgery or that prefer an alternative approach. Methods Athymic nude mice were subcutaneously inoculated with prostate cancer cells. The mice were divided into four cohorts, one cohort untreated, two cohorts received docetaxel (10 mg/kg) either subcutaneo…
INULIN BASED HYDROGEL FOR ORAL DELIVERY OF FLUTAMIDE: PREPARATION, CHARACTERIZATION AND IN VIVO RELEASE STUDIES
2012
The ability of a hydrogel obtained by crosslinking INUDV and PEGBa to facilitate sustained release of flutamide is examined. The hydrogel is prepared in pH = 7.4 PBS and no toxic solvents or catalysts are used. It is recovered in microparticulate form and its size distribution is determined. Mucoadhesive properties are evaluated in vitro by reproducing gastrointestinal conditions. Flutamide is loaded into the hydrogel using a post-fabrication encapsulation procedure that allows a drug loading comparable to that of market tablets. Drug-loaded microparticles are orally administered to cross-bred dogs and the in vivo study demonstrates their ability to prolong the half-life of the principal ac…
Polyhydroxyethylaspartamide-based micelles for ocular drug delivery
2009
In this paper three copolymers of polyhydroxyethylaspartamide (PHEA), bearing in the side chains polyethylene glycol (PEG) and/or hexadecylamine (C(16)) (PHEA-PEG, PHEA-PEG-C(16) and PHEA-C(16) respectively) have been studied as potential colloidal drug carriers for ocular drug delivery. The physical characterization of all three PHEA derivatives, using the Langmuir trough (LT) and micellar affinity capillary electrophoresis (MACE) techniques allowed to assume that whereas alone PHEA backbone is an inert polymer with respect to the interactions with lipid membranes and drug complexation, when PHEA chains are grafted with long alkyl chains like C(16) or in combination C(16) chains and hydrop…
Pre-clinical assessment of a water-in-fluorocarbon emulsion for the treatment of pulmonary vascular diseases
2019
Abstract Hypoxic pulmonary vasoconstriction (HPV) is a well-characterized vascular response to low oxygen pressures and is involved in life-threatening conditions such as high-altitude pulmonary edema (HAPE) and pulmonary arterial hypertension (PAH). While the efficacy of oral therapies can be affected by drug metabolism, or dose-limiting systemic toxicity, inhaled treatment via pressured metered dose inhalers (pMDI) may be an effective, nontoxic, practical alternative. We hypothesized that a stable water-in-perfluorooctyl bromide (PFOB) emulsion that provides solubility in common pMDI propellants, engineered for intrapulmonary delivery of pulmonary vasodilators, reverses HPV during acute h…
Innovative in Vitro Method To Predict Rate and Extent of Drug Delivery to the Brain across the Blood–Brain Barrier
2013
The relevant parameters for predicting rate and extent of access across the blood-brain barrier (BBB) are fu,plasma (unbound fraction in plasma), Vu,brain (distribution volume in brain) and Kp,uu,brain (ratio of free concentrations in plasma and brain). Their estimation still requires animal studies and in vitro low throughput experiments which make difficult the screening of new CNS candidates. The aim of the present work was to develop a new whole in vitro high throughput method to predict drug rate and extent of access across the BBB. The system permits estimation of fu,plasma, Vu,brain and Kp,uu,brain in a single experimental system, using in vitro cell monolayers in different condition…