Search results for "DETECTOR"

showing 10 items of 3491 documents

Color Sensitive Response of Graphene/Graphene Quantum Dot Phototransistors

2019

We present the fabrication and characterization of all-carbon phototransistors made of graphene three terminal devices, coated with atomically precise graphene quantum dots (GQD). Chemically synthesized GQDs are the light absorbing materials, while the underlying chemical vapor deposition (CVD)-grown graphene layer acts as the charge transporting channel. We investigated three types of GQDs with different sizes and edge structures, having distinct and characteristic optical absorption in the UV–vis range. The photoresponsivity exceeds 106 A/W for vanishingly small incident power (<10–12 W), comparing well with state of the art sensitized graphene photodetectors. More importantly, the photor…

---Materials scienceAbsorption spectroscopybusiness.industryGraphenePhotodetector02 engineering and technologyChemical vapor deposition010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesGraphene quantum dot0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionResponsivityGeneral EnergyQuantum dotlawOptoelectronicsPhysical and Theoretical Chemistry0210 nano-technologybusinessAbsorption (electromagnetic radiation)
researchProduct

Calibration of an airborne HO&amp;lt;sub&amp;gt;&amp;lt;i&amp;gt;x&amp;lt;/i&amp;gt;&amp;lt;/sub&amp;gt; instrument using the All Pressure Altitude-b…

2020

Abstract. Laser-induced fluorescence (LIF) is a widely used technique for both laboratory-based and ambient atmospheric chemistry measurements. However, LIF instruments require calibrations in order to translate instrument response into concentrations of chemical species. Calibration of LIF instruments measuring OH and HO2 ( HOx ) typically involves the photolysis of water vapor by 184.9 nm light, thereby producing quantitative amounts of OH and HO2 . For ground-based HOx instruments, this method of calibration is done at one pressure (typically ambient pressure) at the instrument inlet. However, airborne HOx instruments can experience varying cell pressures, internal residence times, tempe…

010302 applied physicsAtmospheric ScienceMaterials science010504 meteorology & atmospheric sciencesNozzleDetectorAnalytical chemistryHumidity01 natural sciencesAtmospheric chemistry0103 physical sciencesCalibrationPressure altitudeWater vapor0105 earth and related environmental sciencesAmbient pressureAtmospheric Measurement Techniques
researchProduct

The filter and calibration wheel for the ATHENA wide field imager

2016

The planned filter and calibration wheel for the Wide Field Imager (WFI) instrument on Athena is presented. With four selectable positions it provides the necessary functions, in particular an UV/VIS blocking filter for the WFI detectors and a calibration source. Challenges for the filter wheel design are the large volume and mass of the subsystem, the implementation of a robust mechanism and the protection of the ultra-thin filter with an area of 160 mm square. This paper describes performed trade-offs based on simulation results and describes the baseline design in detail. Reliable solutions are envisaged for the conceptual design of the filter and calibration wheel. Four different varian…

010302 applied physicsComputer scienceDetectorFilter wheel mechanism FEM structural and acoustic analysis ATHENA WFIVolume (computing)Blocking (statistics)01 natural sciencesSquare (algebra)Settore FIS/05 - Astronomia E AstrofisicaPosition (vector)Filter (video)0103 physical sciencesElectronic engineeringCalibration010303 astronomy & astrophysicsSimulation
researchProduct

Experimental Equipment for Studying the Residual Stresses Developed During High Temperature Reactions by X-Ray Diffraction

1996

This paper describes a device dedicated to studyng, by X-ray diffraction the residual stresses developed on surface samples as a function of temperature and atmosphere conditions. The setup consists of : a.) an horizontal axis goniometer which allows the programmed positionning of the sealed X-ray source and of the linear detector. b.) a high temperature controlled atmosphere chamber Particular attention has been paid to the thermal stability up to 1200°C and the accurate position on the sample.

010302 applied physicsDiffractionControlled atmosphereChemistrybusiness.industryDetectorGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesAtmosphereOpticsResidual stressGoniometer[PHYS.HIST]Physics [physics]/Physics archives0103 physical sciencesX-ray crystallographyThermal stability0210 nano-technologybusiness
researchProduct

Quasi-parallel precession diffraction: Alignment method for scanning transmission electron microscopes.

2018

Abstract A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on …

010302 applied physicsDiffractionMaterials sciencebusiness.industryDetector02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesDark field microscopyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionOpticsElectron diffractionProjectorlaw0103 physical sciencesPrecessionElectron microscope0210 nano-technologybusinessInstrumentationBeam (structure)Ultramicroscopy
researchProduct

Formation of dislocations and hardening of LiF under high-dose irradiation with 5–21 MeV 12C ions

2017

R. Zabels, I. Manika, J. Maniks, and R.Grants acknowledge the national project IMIS2, and A. Dauletbekova, M. Baizhumanov, and M. Zdorovets the Ministry of Education and Science of the Republic of Kazakhstan for the financial support.

010302 applied physicsEnergy lossMaterials sciencePhysics::Instrumentation and DetectorsAtomic force microscopyAstrophysics::High Energy Astrophysical PhenomenaPhysics::Medical Physicsmacromolecular substances02 engineering and technologyGeneral ChemistryNanoindentation021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsIsotropic etchingElastic collisionIonPhysics::Plasma Physics0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Hardening (metallurgy)General Materials ScienceIrradiationAtomic physics0210 nano-technologyApplied Physics A
researchProduct

Systematic and statistical uncertainties of the hilbert-transform based high-precision FID frequency extraction method.

2021

Abstract Pulsed nuclear magnetic resonance (NMR) is widely used in high-precision magnetic field measurements. The absolute value of the magnetic field is determined from the precession frequency of nuclear magnetic moments. The Hilbert transform is one of the methods that have been used to extract the phase function from the observed free induction decay (FID) signal and then its frequency. In this paper, a detailed implementation of a Hilbert-transform based FID frequency extraction method is described, and it is briefly compared with other commonly used frequency extraction methods. How artifacts and noise level in the FID signal affect the extracted phase function are derived analytical…

010302 applied physicsLarmor precessionPhysicsNuclear and High Energy PhysicsPhysics - Instrumentation and Detectors010308 nuclear & particles physicsNoise (signal processing)Covariance matrixMathematical analysisBiophysicsFOS: Physical sciencesAbsolute valueInstrumentation and Detectors (physics.ins-det)Condensed Matter Physics01 natural sciencesBiochemistrySignalFree induction decaysymbols.namesake0103 physical sciencessymbolsHilbert transformUncertainty analysisJournal of magnetic resonance (San Diego, Calif. : 1997)
researchProduct

Photoelectron Emission from Metal Surfaces Induced by VUV-emission of Filament Driven Hydrogen Arc Discharge Plasma

2015

Photoelectron emission measurements have been performed using a filament-driven multi-cusp arc discharge volume production H^- ion source (LIISA). It has been found that photoelectron currents obtained with Al, Cu, Mo, Ta and stainless steel (SAE 304) are on the same order of magnitude. The photoelectron currents depend linearly on the discharge power. It is shown experimentally that photoelectron emission is significant only in the short wavelength range of hydrogen spectrum due to the energy dependence of the quantum efficiency. It is estimated from the measured data that the maximum photoelectron flux from plasma chamber walls is on the order of 1 A per kW of discharge power.

010302 applied physicsMaterials scienceHydrogenPhysics::Instrumentation and DetectorsFluxchemistry.chemical_elementFOS: Physical sciencesPlasma01 natural sciences7. Clean energyPhysics - Plasma PhysicsIon source010305 fluids & plasmasElectric arcPlasma Physics (physics.plasm-ph)chemistryPhysics::Plasma Physics0103 physical sciencesPhysics::Atomic and Molecular ClustersQuantum efficiencyPhysics::Atomic PhysicsAtomic physicsHydrogen spectral seriesOrder of magnitude
researchProduct

Optimization of a laser ion source for $^{163}$Ho isotope separation

2019

To measure the mass of the electron neutrino, the “Electron Capture in Holmium-163” (ECHo) collaboration aims at calorimetrically measuring the spectrum following electron capture in 163Ho. The success of the ECHo experiment depends critically on the radiochemical purity of the 163Ho sample, which is ion-implanted into the calorimeters. For this, a 30 kV high transmission magnetic mass separator equipped with a resonance ionization laser ion source is used. To meet the ECHo requirements, the ion source unit was optimized with respect to its thermal characteristics and material composition by means of the finite element method thermal-electric calculations and chemical equilibrium simulation…

010302 applied physicsMaterials sciencePhysics - Instrumentation and DetectorsAtomic Physics (physics.atom-ph)Electron captureFOS: Physical sciencesThermal ionizationInstrumentation and Detectors (physics.ins-det)Laser01 natural sciencesIon source010305 fluids & plasmasIsotope separationlaw.inventionPhysics - Atomic PhysicslawIonization0103 physical sciencesThermalAtomic physicsChemical equilibriumInstrumentation
researchProduct

Choice of the detectors for light impurities plasma studies at W7-X using ‘CO Monitor’ system

2019

Abstarct The ‘CO Monitor’ is a new spectrometer system dedicated for the continuous measurements of line intensities of carbon, oxygen, boron and nitrogen at the fusion plasma experiment Wendelstein 7-X (W7-X). Its main purpose is to deliver constant information about indicated elements with high time resolution (better than 1 ms), but low spatial resolution since the line shapes are not going to be investigated. The system consists of four independent channels, each equipped with dispersive element dedicated for measurement of selected line of interest. In order to perform the highest efficiency of the ‘CO Monitor’ system, it is essential to choose the proper detector type for this task. T…

010302 applied physicsMaterials scienceSpectrometerbusiness.industryMechanical EngineeringDetectorPhase (waves)PlasmaElectronXUVDetectorsWendelstein 7-XStellarator01 natural sciencesLine (electrical engineering)010305 fluids & plasmasOpticsNuclear Energy and Engineering0103 physical sciencesGeneral Materials SciencebusinessSensitivity (electronics)Image resolutionCivil and Structural EngineeringFusion Engineering and Design
researchProduct