Search results for "DEVBIO"

showing 4 items of 4 documents

In Vitro-Differentiated Embryonic Stem Cells Give Rise to Male Gametes that Can Generate Offspring Mice

2006

SummaryMale gametes originate from a small population of spermatogonial stem cells (SSCs). These cells are believed to divide infinitely and to support spermatogenesis throughout life in the male. Here, we developed a strategy for the establishment of SSC lines from embryonic stem (ES) cells. These cells are able to undergo meiosis, are able to generate haploid male gametes in vitro, and are functional, as shown by fertilization after intracytoplasmic injection into mouse oocytes. Resulting two-cell embryos were transferred into oviducts, and live mice were born. Six of seven animals developed to adult mice. This is a clear indication that male gametes derived in vitro from ES cells by this…

MaleGreen Fluorescent ProteinsPopulationDNA RecombinantDEVBIOMice TransgenicIn Vitro TechniquesBiologyGeneral Biochemistry Genetics and Molecular BiologyCell LineMice03 medical and health sciences0302 clinical medicinePregnancymedicineAnimalsSperm Injections IntracytoplasmicSpermatogenesiseducationMolecular BiologyGametogenesis030304 developmental biology0303 health scienceseducation.field_of_study030219 obstetrics & reproductive medicineBase SequenceStem CellsCell DifferentiationEmbryoCell BiologyEmbryo TransferSTEMCELLEmbryonic stem cellRecombinant ProteinsSpermatogoniaCell biologyLuminescent ProteinsMeiosismedicine.anatomical_structureImmunologyGameteFemalePloidyStem cellSpermatogenesisStem Cell TransplantationDevelopmental BiologyDevelopmental Cell
researchProduct

An essential switch in subunit composition of a chromatin remodeling complex during neural development.

2007

Summary Mammalian neural stem cells (NSCs) have the capacity to both self-renew and to generate all the neuronal and glial cell-types of the adult nervous system. Global chromatin changes accompany the transition from proliferating NSCs to committed neuronal lineages, but the mechanisms involved have been unclear. Using a proteomics approach, we show that a switch in subunit composition of neural, ATP-dependent SWI/SNF-like chromatin remodeling complexes accompanies this developmental transition. Proliferating neural stem and progenitor cells express complexes in which BAF45a, a Kruppel/PHD domain protein and the actin-related protein BAF53a are quantitatively associated with the SWI2/SNF2-…

Cellular differentiationProtein subunitNeuroscience(all)Molecular Sequence DataNeuroepithelial CellsDEVBIONerve Tissue ProteinsBiologyChromatin remodelingMOLNEUROEpigenesis Genetic03 medical and health sciencesMice0302 clinical medicineMultienzyme ComplexesAnimalsAmino Acid SequenceProgenitor cell030304 developmental biologyNeurons0303 health sciencesGeneral NeuroscienceMultipotent Stem CellsGene Expression Regulation DevelopmentalCell DifferentiationChromatin Assembly and DisassemblySTEMCELLNeural stem cellChromatinCell biologyNeuroepithelial cellProtein SubunitsNeural developmentNeuroglia030217 neurology & neurosurgeryTranscription FactorsNeuron
researchProduct

Satb2 Regulates Callosal Projection Neuron Identity in the Developing Cerebral Cortex

2008

SummarySatb2 is a DNA-binding protein that regulates chromatin organization and gene expression. In the developing brain, Satb2 is expressed in cortical neurons that extend axons across the corpus callosum. To assess the role of Satb2 in neurons, we analyzed mice in which the Satb2 locus was disrupted by insertion of a LacZ gene. In mutant mice, β-galactosidase-labeled axons are absent from the corpus callosum and instead descend along the corticospinal tract. Satb2 mutant neurons acquire expression of Ctip2, a transcription factor that is necessary and sufficient for the extension of subcortical projections by cortical neurons. Conversely, ectopic expression of Satb2 in neural stem cells m…

Chromatin ImmunoprecipitationNeuroscience(all)Electrophoretic Mobility Shift AssayMice TransgenicNerve Tissue ProteinsDEVBIOBiologyCorpus callosumMOLNEUROMiceNeural PathwaysmedicineAnimalsCells CulturedCerebral CortexNeuronsRegulation of gene expressionStem CellsGeneral NeuroscienceGene Expression Regulation DevelopmentalMatrix Attachment Region Binding ProteinsDNAEmbryo MammalianNeural stem cellChromatinmedicine.anatomical_structureAnimals NewbornBromodeoxyuridinenervous systemCerebral cortexRegulatory sequenceMutationCorticospinal tractEctopic expressionNeuroscienceTranscription Factors
researchProduct

PDGFRα-Positive B Cells Are Neural Stem Cells in the Adult SVZ that Form Glioma-like Growths in Response to Increased PDGF Signaling

2006

Neurons and oligodendrocytes are produced in the adult brain subventricular zone (SVZ) from neural stem cells (B cells), which express GFAP and have morphological properties of astrocytes. We report here on the identification B cells expressing the PDGFRalpha in the adult SVZ. Specifically labeled PDGFRalpha expressing B cells in vivo generate neurons and oligodendrocytes. Conditional ablation of PDGFRalpha in a subpopulation of postnatal stem cells showed that this receptor is required for oligodendrogenesis, but not neurogenesis. Infusion of PDGF alone was sufficient to arrest neuroblast production and induce SVZ B cell proliferation contributing to the generation of large hyperplasias wi…

Receptor Platelet-Derived Growth Factor alphaAdolescentNeuroscience(all)Subventricular zoneMice TransgenicDEVBIOBiologyMOLNEUROMiceNeuroblastLateral VentriclesmedicineAnimalsHumansCell ProliferationAged 80 and overNeuronsPlatelet-Derived Growth FactorStem CellsGeneral NeuroscienceNeurogenesisGliomaMiddle AgedSTEMCELLOligodendrocyteNeural stem cellCell biologymedicine.anatomical_structurenervous systemNeuronStem cellNeuroscienceSignal TransductionAdult stem cellNeuron
researchProduct