Search results for "DIMERIZATION"

showing 10 items of 143 documents

Comprehensive analysis of expression, subcellular localization, and cognate pairing of SNARE proteins in oligodendrocytes

2009

Oligodendrocytes form the central nervous system myelin sheath by spiral wrapping of their plasma membrane around axons, necessitating a high rate of exocytic membrane addition to the growing myelin membrane. Membrane fusion is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins (SNAREs), which act by specific pairing of vesicle (R)- and target (Q)-SNAREs. To characterize oligodendroglial SNAREs and their trafficking pathways, we performed a detailed expression analysis of SNAREs in differentiating cultured oligodendrocytes and myelin and determined their subcellular localization. Expression of the plasma membrane Q-SNAREs syntaxin 3, syntaxin 4, SNAP2…

Central Nervous SystemMaleVesicle-Associated Membrane Protein 3SynaptobrevinGolgi ApparatusBiologyMembrane FusionR-SNARE ProteinsMiceCellular and Molecular NeuroscienceSNAP23AnimalsSyntaxinQc-SNARE ProteinsTransport VesiclesCells CulturedMyelin SheathR-SNARE ProteinsQa-SNARE ProteinsVesicleCell MembraneLipid bilayer fusionQb-SNARE ProteinsSyntaxin 3Cell CompartmentationTransport proteinCell biologyOligodendrogliaProtein Transportnervous systemFemalebiological phenomena cell phenomena and immunitySNARE ProteinsDimerizationJournal of Neuroscience Research
researchProduct

Cissampeloflavone, a chalcone-flavone dimer from Cissampelos pareira

2003

From the aerial parts of Cissampelos pareira L. (Menispermaceae), a chalcone-flavone dimer has been isolated which, mainly from NMR spectroscopic and MS data, was proved to be 2-(4-hydroxy-3-methoxyphenyl)-7-(4-methoxyphenyl)-6-(2-hydroxy-4,6-dimethoxybenzoyl)-furano[3,2-g]benzopyran-4-one. This has been assigned the trivial name cissampeloflavone. The compound has good activity against Trypanosoma cruzi and T. brucei rhodesiense and has a low toxicity to the human KB cell line.

ChalconeMagnetic Resonance Spectroscopymedicine.drug_classStereochemistryDimerAntiprotozoal AgentsPlant ScienceHorticultureBiologyPharmacognosyBiochemistryFlavonesKB Cellschemistry.chemical_compoundChalconemedicineAnimalsHumansMenispermaceaeTrypanosoma cruziMolecular BiologyFlavonoidschemistry.chemical_classificationEukaryotaGeneral MedicineCissampelosPlant Components Aerialbiology.organism_classificationAntineoplastic Agents PhytogenicchemistryCissampelos pareiraAntiprotozoalDimerizationPhytochemistry
researchProduct

Assembly and Separation of Semiconductor Quantum Dot Dimers and Trimers

2011

Repeated precipitation of colloidal semiconductor quantum dots (QD) from a good solvent by adding a poor solvent leads to an increasing number of QD oligomers after redispersion in the good solvent. By using density gradient ultracentrifugation we have been able to separate QD monomer, dimer, and trimer fractions from higher oligomers in such solutions. In the corresponding fractions QD dimers and trimers have been enriched up to 90% and 64%, respectively. Besides directly coupled oligomers, QD dimers and trimers were also assembled by linkage with a rigid terrylene diimide dye (TDI) and separated again by ultracentrifugation. High-resolution transmission electron micrographs show that the …

ChemistrySurface PropertiesDimerAnalytical chemistryTrimerGeneral ChemistrySubstrate (electronics)PhotochemistryBiochemistryCatalysisSolventchemistry.chemical_compoundColloidColloid and Surface ChemistryMonomerSemiconductorsDiimideQuantum DotsDensity gradient ultracentrifugationParticle SizeDimerization
researchProduct

Pigment Binding, Fluorescence Properties, and Oligomerization Behavior of Lhca5, a Novel Light-harvesting Protein

2005

A new potential light-harvesting protein, named Lhca5, was recently detected in higher plants. Because of the low amount of Lhca5 in thylakoid membranes, the isolation of a native Lhca5 pigment-protein complex has not been achieved to date. Therefore, we used in vitro reconstitution to analyze whether Lhca5 binds pigments and is actually an additional light-harvesting protein. By this approach we could demonstrate that Lhca5 binds pigments in a unique stoichiometry. Analyses of pigment requirements for light-harvesting complex formation by Lhca5 revealed that chlorophyll b is the only indispensable pigment. Fluorescence measurements showed that ligated chlorophylls and carotenoids are arran…

ChlorophyllChlorophyll bPigment bindingArabidopsisLight-Harvesting Protein Complexesmacromolecular substancesBiologyPhotosystem IBiochemistryFluorescencechemistry.chemical_compoundProtein structureProtein Structure QuaternaryMolecular BiologyPhotosystemPhotosystem I Protein ComplexArabidopsis ProteinsPigments BiologicalCell BiologyCarotenoidsFluorescenceBiochemistrychemistryThylakoidChlorophyll Binding ProteinsChlorophyll Binding ProteinsDimerizationJournal of Biological Chemistry
researchProduct

Amino acids in the second transmembrane helix of the Lhca4 subunit are important for formation of stable heterodimeric light-harvesting complex LHCI-…

2007

Photosynthetic light-harvesting complexes (LHCs) are assembled from apoproteins (Lhc proteins) and non-covalently attached pigments. Despite a considerable amino acid sequence identity, these proteins differ in their oligomerization behavior. To identify the amino acid residues determining the heterodimerization of Lhca1 and Lhca4 to form LHCI-730, we mutated the poorly conserved second transmembrane helix of the two subunits. Mutated genes were expressed in Escherichia coli and the resultant proteins were refolded in vitro and subsequently analyzed by gel electrophoresis. Replacement of the entire second helix in Lhca4 by the one of Lhca3 abolished heterodimerization, whereas it had no eff…

ChlorophyllModels MolecularMolecular Sequence DataLight-Harvesting Protein ComplexesBiologyProtein Structure SecondarySerineSolanum lycopersicumStructural BiologyChlorophyll bindingConsensus sequenceHistidineHomology modelingAmino Acid SequenceAmino AcidsProtein Structure QuaternaryMolecular BiologyPeptide sequenceHistidinePlant Proteinschemistry.chemical_classificationPhotosystem I Protein ComplexAmino acidTransmembrane domainProtein SubunitschemistryBiochemistryMutagenesisChlorophyll Binding ProteinsDimerizationSequence AlignmentJournal of molecular biology
researchProduct

Localization of the N-terminal Domain in Light-harvesting Chlorophyll a/b Protein by EPR Measurements

2005

The conformational distribution of the N-terminal domain of the major light-harvesting chlorophyll a/b protein (LHCIIb) has been characterized by electron-electron double resonance yielding distances between spin labels placed in various domains of the protein. Distance distributions involving residue 3 near the N terminus turned out to be bimodal, revealing that this domain, which is involved in regulatory functions such as balancing the energy flow through photosystems (PS) I and II, exists in at least two conformational states. Models of the conformational sub-ensembles were generated on the basis of experimental distance restraints from measurements on LHCIIb monomers and then checked f…

ChlorophyllModels MolecularThreonineConformational changeTime FactorsLightMacromolecular SubstancesProtein ConformationPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesElectronsTrimerCrystallography X-RayThylakoidsBiochemistryProtein Structure Secondarylaw.inventionResidue (chemistry)chemistry.chemical_compoundlawEscherichia coliAnimalsPhosphorylationAnnexin A4Electron paramagnetic resonanceMolecular BiologyPhotosystemPhotosystem I Protein ComplexChemistryChlorophyll AElectron Spin Resonance SpectroscopyPeasPhotosystem II Protein ComplexCell BiologyRecombinant ProteinsProtein Structure TertiaryOxygenN-terminusCrystallographyMonomerThylakoidMutationCattleSpin LabelsDimerizationJournal of Biological Chemistry
researchProduct

Evidence for two spectroscopically different dimers of light-harvesting complex I from green plants

2000

A preparation consisting of isolated dimeric peripheral antenna complexes from green plant photosystem I (light-harvesting complex I or LHCI) has been characterized by means of (polarized) steady-state absorption and fluorescence spectroscopy at low temperatures. We show that this preparation can be described reasonably well by a mixture of two types of dimers. In the first dimer about 10% of all Q(y)() absorption of the chlorophylls arises from two chlorophylls with absorption and emission maxima at about 711 and 733 nm, respectively, whereas in the second about 10% of the absorption arises from two chlorophylls with absorption and emission maxima at about 693 and 702 nm, respectively. The…

ChlorophyllP700Photosystem IIPhotosystem I Protein ComplexChemistryDimerCircular DichroismPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesPhotosystem II Protein ComplexPhotochemistryPhotosystem IBiochemistryZea maysFluorescence spectroscopychemistry.chemical_compoundSpectrometry FluorescenceLight harvesting complex ISpectrophotometryAbsorption (chemistry)Protein Structure QuaternaryDimerization
researchProduct

Effects of succinylation on thermal induced amyloid formation in Concanavalin A.

2007

We have recently shown that upon slight thermal destabilization the legume lectin Concanavalin A may undergo two different aggregation processes, leading, respectively, to amyloid fibrils at high pH and amorphous aggregates at low pH. Here we present an experimental study on the amyloid aggregation of Succinyl Concanavalin A, which is a dimeric active variant of Concanavalin. The results show that, as for the native protein, the fibrillation process appears to be favoured by alkaline pH, far from the isoelectric point of the protein. Moreover, it strongly depends on temperature and requires large conformational changes both at secondary and tertiary structure level. With respect to the nati…

Circular dichroismAmyloidProtein DenaturationAmyloidbiologyChemistryCircular DichroismBiophysicsLegume lectinGeneral MedicineProtein aggregationHydrogen-Ion ConcentrationProtein tertiary structureProtein Structure SecondaryProtein Structure Tertiaryprotein aggregationSuccinylationIsoelectric pointBiochemistryConcanavalin Abiology.proteinConcanavalin AThermodynamicsDimerizationHydrophobic and Hydrophilic Interactions
researchProduct

Environment- and sequence-dependent modulation of the double-stranded to single-stranded conformational transition of gramicidin A in membranes.

1998

The role of the membrane lipid composition and the individual Trp residues in the conformational rearrangement of gramicidin A along the folding pathway to its channel conformation has been examined in phospholipid bilayers by means of previously described size-exclusion high-performance liquid chromatography HPLC-based strategy (Bano et al. (1991) Biochemistry 30, 886). It has been demonstrated that the chemical composition of the membrane influences the transition rate of the peptide rearrangement from double-stranded dimers to beta-helical monomers. The chemical modification of Trp residues, or its substitution by the more hydrophobic residues phenylalanine or naphthylalanine, stabilized…

Circular dichroismStereochemistryProtein ConformationDimerPhenylalanineEnterococcus faeciumLipid BilayersMolecular Sequence DataPeptideMicrobial Sensitivity TestsBiochemistrychemistry.chemical_compoundProtein structureAmino Acid SequencePeptide sequenceChromatography High Pressure Liquidchemistry.chemical_classificationChemistryCholestenesCircular DichroismGramicidinTryptophanFolding (chemistry)MembraneSpectrometry FluorescenceAmino Acid SubstitutionGramicidinFatty Acids UnsaturatedPhosphatidylcholinesDimerizationBiochemistry
researchProduct

Size-exclusion high-performance liquid chromatography in the study of the autoassociating antibiotic gramicidin A in micellar milieu.

2003

Gramicidin A (gA) is a polypeptide antibiotic which forms dimeric channels specific for monovalent cations in biological membranes. It is a polymorphic molecule that adopts several different conformations, double-stranded (ds) helical dimers (pore conformation) and single-stranded beta-helical dimers (channel conformation). This study investigated the conformational adaptability of gramicidin A when incorporated into micelles as membrane-mimetic model system. Taking advantage of our reported, versatile, size-exclusion high-performance liquid chromatography (SE-HPLC) strategy that allows the separation of double-stranded dimers and monomers, we have quantitatively characterized the conformat…

Circular dichroismStereochemistryProtein ConformationSize-exclusion chromatographyBiophysicsPeptideBiochemistryMicellechemistry.chemical_compoundMembrane LipidsSurface-Active AgentsProtein structureBiomimetic MaterialsColloidsChromatography High Pressure LiquidMicelleschemistry.chemical_classificationCircular DichroismGramicidinBiological membraneMembranes ArtificialCombinatorial chemistryAnti-Bacterial AgentsMembraneMonomerchemistryChromatography GelDimerizationJournal of biochemical and biophysical methods
researchProduct