Search results for "DIPOLE"

showing 10 items of 982 documents

Relativistic coupled cluster calculations of the electronic structure of KrH+, XeH+ and RnH+

2012

Potential energy curves of NgH+ cations (Ng = Kr, Xe, Rn) were obtained by using four-component relativistic CCSD(T) coupled cluster calculations. Dissociation energies, equilibrium bond lengths, electronic properties, such as dipole moments and electric field gradients at the nuclei, and the related spectroscopic parameters of the electronic ground state have been determined. The results obtained for KrH+ and XeH+ are in good agreement with available experimental data, while those for RnH+ have been determined for the first time at this level of theory.

Bond lengthDipoleCoupled clusterChemistryElectric fieldRelativistic effects Coupled cluster Protonated noble gasesElectronic structurePhysical and Theoretical ChemistryAtomic physicsGround statePotential energyDissociation (chemistry)Theoretical Chemistry Accounts
researchProduct

Dipole reorientation and local density of optical states influence the emission of light-emittingelectrochemical cells

2020

Herein, we analyze the temporal evolution of the electroluminescence of light-emitting electrochemicalcells (LECs), a thin-film light-emitting device, in order to maximize the luminous power radiated bythese devices. A careful analysis of the spectral and angular distribution of the emission of LECsfabricated under the same experimental conditions allows describing the dynamics of the spatial regionfrom which LECs emit,i.e.the generation zone, as bias is applied. This effect is mediated by dipolereorientation within such an emissive region and its optical environment, since its spatial drift yields adifferent interplay between the intrinsic emission of the emitters and the local density of …

BrightnessMaterials sciencebusiness.industryAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and Astronomy02 engineering and technologyElectroluminescence010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences3. Good health0104 chemical sciencesElectrochemical cellLuminous fluxElectroquímicaDipoleAngular distributionOptoelectronicsPhysical and Theoretical Chemistry0210 nano-technologybusinessMaterials
researchProduct

Unequal rapidity correlators in the dilute limit of the JIMWLK evolution

2019

We study unequal rapidity correlators in the stochastic Langevin picture of Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) evolution in the color glass condensate effective field theory. We discuss a diagrammatic interpretation of the long-range con elators. By separately evolving the Wilson lines in the direct and complex conjugate amplitudes, we use the formalism to study two-particle production at large rapidity separations. We show that the evolution between the rapidities of the two produced particles can be expressed as a linear equation, even in the full nonlinear limit. We also show how the Langevin formalism for two-particle correlations reduces to a Balitsky-Fadin…

COLLISIONSPosition and momentum spacehiukkasfysiikkafield theory114 Physical sciences01 natural sciencesColor-glass condensatenuclear physicsINFINITE-MOMENTUM0103 physical sciencesEQUATIONEffective field theorySCATTERINGRapidity010306 general physicsMathematical physicsPhysicsComplex conjugate010308 nuclear & particles physicsStochastic processCOLOR GLASS CONDENSATENONLINEAR GLUON EVOLUTIONNonlinear systemDIPOLE PICTUREkvanttikenttäteoriaydinfysiikkaLinear equationPhysical Review D
researchProduct

Dipolar Rings of Microscopic Ellipsoids: Magnetic Manipulation and Cell Entrapment

2016

We study the formation and dynamics of dipolar rings composed by microscopic ferromagnetic ellipsoids, which self-assemble in water by switching the direction of the applied field. We show how to manipulate these fragile structures and control their shape via application of external static and oscillating magnetic fields. We introduce a theoretical framework which describes the ring deformation under an applied field, allowing to understand the underlying physical mechanism. Our microscopic rings are finally used to capture, entrap and later release a biological cell via magnetic command, i.e. performing a simple operation which can be implemented in other microfluidic devices which make us…

Camps magnèticsFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyCondensed Matter - Soft Condensed Matter01 natural sciencesImaging phantom0103 physical sciencesNanotechnologyColloids010306 general physicsAnisotropyCol·loidesPhysicsCondensed matter physicsNanotecnologia021001 nanoscience & nanotechnologyEllipsoidDynamicsDipoleFerromagnetismMagnetic fieldsDinàmicaSoft Condensed Matter (cond-mat.soft)Biological cellCell entrapment0210 nano-technologyMagnetic manipulationPhysical Review Applied
researchProduct

The chemical bonds in CuH, Cu2, NiH, and Ni2 studied with multiconfigurational second order perturbation theory

1994

The performance of multiconfigurational second order perturbation theory has been analyzed for the description of the bonding in CuH, Cu2, NiH, and Ni2. Large basis sets based on atomic natural orbitals (ANOS) were employed. The effects of enlarging the active space and including the core‐valence correlation contributions have also been analyzed. Spectroscopic constants have been computed for the corresponding ground state. The Ni2 molecule has been found to have a 0+g ground state with a computed dissociation energy of 2.10 eV, exp. 2.09 eV, and a bond distance of 2.23 Å. The dipole moments of NiH and CuH are computed to be 2.34 (exp. 2.4±0.1) and 2.66 D, respectively. pou@uv.es ; merchan@…

Chemical BondsGeneral Physics and AstronomyDissociation EnergyDipole MomentsPerturbation Theory ; Chemical Bonds ; Configuration Interaction ; Copper Hydrides ; Nickel Hydrides ; Copper ; Nickel ; Electron Correlation ; Core Levels ; Dissociation Energy ; Dipole Moments ; Bond Lengths ; Diatomic MoleculesCore LevelsBond LengthsNickelPhysical and Theoretical ChemistryPerturbation theory:FÍSICA::Química física [UNESCO]Nickel HydridesDiatomic MoleculesElectronic correlationChemistryConfiguration interactionBond-dissociation energyDiatomic moleculeUNESCO::FÍSICA::Química físicaBond lengthConfiguration InteractionChemical bondCopper HydridesPerturbation TheoryElectron CorrelationAtomic physicsGround stateCopper
researchProduct

Ab initio calculations on the molecular structure of fluorocyanopolyynes

1998

Abstract The molecular structure of the first three members of the fluorocyanopolyynes was studied by ab initio Hartree-Fock calculations with a polarized double zeta basis set and at MP2 level with the same basis set. Alternating triple and single bonds were found; a theoretical estimate of rotational constants and dipole moments was performed and a comparison with the available experimental data was made. An analysis of the theoretical vibrational frequencies of the title compounds was carried out.

ChemistryAb initioCondensed Matter PhysicsBiochemistryMolecular physicsDipoleAb initio quantum chemistry methodsPhysics::Atomic and Molecular ClustersSingle bondMoleculeRotational spectroscopyPhysics::Chemical PhysicsPhysical and Theoretical ChemistryAtomic physicsSIESTA (computer program)Basis setJournal of Molecular Structure: THEOCHEM
researchProduct

Dielectric friction effects on rotational reorientation of three cyanine dyes in n-alcohol solutions

1997

We have estimated the effect of dielectric friction on the rotational correlation times of three cationic cyanine dyes. Dielectric corrections were evaluated by using the Stokes–Einstein-Debye hydrodynamic continuum model including the dielectric friction for DiIC2, DiIC6, and DiIC14 in different n-alcohol solutions at room temperature. The dielectric corrections were done to cis and trans conformations of the cyanine dyes. For the trans conformations, which were found more stable than cis conformations, the dielectric model seemed to be more properly suited. The ground and excited state dipole moments for the calculations were evaluated from ab initio molecular orbital calculations and for…

ChemistryAb initioPhysics::OpticsGeneral Physics and AstronomyDielectricMolecular physicsCondensed Matter::Materials Sciencechemistry.chemical_compoundDipoleAb initio quantum chemistry methodsComputational chemistryExcited stateMolecular orbitalPhysics::Chemical PhysicsPhysical and Theoretical ChemistryCyanineCis–trans isomerismThe Journal of Chemical Physics
researchProduct

Molecular Dynamics Simulations of SFG Librational Modes Spectra of Water at the Water–Air Interface

2016

At the water–air interface, the hydrogen-bond network of water molecules is interrupted, and accordingly, the structure and dynamics of the interfacial water molecules are altered considerably compared with the bulk. Such interfacial water molecules have been studied by surface-specific vibrational sum-frequency generation (SFG) spectroscopy probing high-frequency O–H stretch and H–O–H bending modes. In contrast, the low-frequency librational mode has been much less studied with SFG. Because this mode is sensitive to the hydrogen-bond connectivity, understanding the librational mode of the interfacial water is crucial for unveiling a microscopic view of the interfacial water. Here, we compu…

ChemistryAnalytical chemistry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesSpectral lineForce field (chemistry)0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMolecular dynamicsDipoleGeneral EnergyPolarizabilityChemical physicsMoleculePhysics::Chemical PhysicsPhysical and Theoretical Chemistry0210 nano-technologySpectroscopyPhysics::Atmospheric and Oceanic PhysicsThe Journal of Physical Chemistry C
researchProduct

Theoretical study of electronically excited cis- and trans-glyoxal

1997

Abstract The equation-of-motion coupled cluster method for excitation energies in the singles and doubles approximation (EOMEE-CCSD) is applied to an investigation of the structure and harmonic frequencies of planar conformers of glyoxal in their first excited singlet states. For the trans-isomer, agreement between calculated harmonic frequencies and observed fundamentals is generally satisfactory, although the theoretical values are slightly more than 10% too high for the carbonyl stretching modes. Parallel calculations of the corresponding ground state properties allow for an empirical prediction of the excited state frequencies in which calculated differences in normal-mode frequencies a…

ChemistryAtomic and Molecular Physics and OpticsAnalytical Chemistrysymbols.namesakeDipoleCoupled clusterExcited stateMoment (physics)symbolsPhysics::Chemical PhysicsAtomic physicsGround stateInstrumentationConformational isomerismSpectroscopyExcitationDebyeSpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
researchProduct

Interacting induced dipoles polarization model for molecular polarizabilities. Reference molecules, amino acids and model peptides

1999

Abstract We outline a method for the calculation of molecular dipole ( μ ) and quadrupole ( Θ = ) moments and dipole–dipole polarizabilities ( α = ) which we have successfully applied to a series of reference molecules, amino acids and model peptides. The results for μ are in line with CPHF reference calculations. In particular, the calculated positive value of CO is in agreement with both experimental and CI calculations. The computation of ( α = ) has been performed by the interacting induced dipoles polarization model that calculates tensor effective anisotropic point polarizabilities (method of Applequist et al.). The POLAR program cannot be used as a black box. Some tests should be per…

ChemistryComputationCondensed Matter PhysicsPolarization (waves)BiochemistrySmall moleculeMolecular physicsDipoleComputational chemistryQuadrupoleMoleculePolarPhysical and Theoretical ChemistryAnisotropyJournal of Molecular Structure: THEOCHEM
researchProduct