Search results for "DNA Damage"

showing 10 items of 534 documents

Biological activity of PtIV prodrugs triggered by riboflavin-mediated bioorthogonal photocatalysis

2018

AbstractWe have recently demonstrated that riboflavin (Rf) functions as unconventional bioorthogonal photocatalyst for the activation of PtIV prodrugs. In this study, we show how the combination of light and Rf with two PtIV prodrugs is a feasible strategy for light-mediated pancreatic cancer cell death induction. In Capan-1 cells, which have high tolerance against photodynamic therapy, Rf-mediated activation of the cisplatin and carboplatin prodrugs cis,cis,trans-[Pt(NH3)2(Cl)2(O2CCH2CH2CO2H)2] (1) and cis,cis,trans-[Pt(NH3)2(CBDCA)(O2CCH2CH2CO2H)2] (2, where CBDCA = cyclobutane dicarboxylate) resulted in pronounced reduction of the cell viability, including under hypoxia conditions. Such …

0301 basic medicineProgrammed cell deathLightOrganoplatinum CompoundsDNA damageCell SurvivalRiboflavinlcsh:MedicinePlatinum prodrugs DNA bioorthogonal photocatalysis riboflavinAntineoplastic AgentsArticle03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCell Line TumormedicineHumansProdrugsViability assaylcsh:ScienceCisplatinMultidisciplinaryChemistrylcsh:RProdrugPhotochemical ProcessesChemical biologyCarboplatinCoordination chemistry030104 developmental biologySettore CHIM/03 - Chimica Generale E InorganicaCell culture030220 oncology & carcinogenesisBiophysicslcsh:QBioorthogonal chemistrymedicine.drug
researchProduct

Regulation of E2F1 Transcription Factor by Ubiquitin Conjugation

2017

IF 3.226; International audience; Ubiquitination is a post-translational modification that defines the cellular fate of intracellular proteins. It can modify their stability, their activity, their subcellular location, and even their interacting pattern. This modification is a reversible event whose implementation is easy and fast. It contributes to the rapid adaptation of the cells to physiological intracellular variations and to intracellular or environmental stresses. E2F1 (E2 promoter binding factor 1) transcription factor is a potent cell cycle regulator. It displays contradictory functions able to regulate both cell proliferation and cell death. Its expression and activity are tightly…

0301 basic medicineProgrammed cell deathReviewubiquitinationCatalysislcsh:ChemistryInorganic Chemistry03 medical and health sciencesUbiquitinAnimalsHumansE2F1Physical and Theoretical Chemistry[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biologylcsh:QH301-705.5Molecular BiologyTranscription factorSpectroscopybiologyCell growthOrganic ChemistryE2F1 Transcription FactorGeneral MedicineCell cycleComputer Science ApplicationsCell biology030104 developmental biologyE2F1lcsh:Biology (General)lcsh:QD1-999biology.proteinDNA damagecell cycleE2F1 Transcription FactorIntracellularInternational Journal of Molecular Sciences
researchProduct

DICER- and MMSET-catalyzed H4K20me2 recruits the nucleotide excision repair factor XPA to DNA damage sites

2017

The endoribonuclease DICER facilitates chromatin decondensation during lesion recognition following UV exposure. Chitale and Richly show that DICER mediates the recruitment of the methyltransferase MMSET, which catalyzes the dimethylation of histone H4 at lysine 20 and facilitates the recruitment of the nucleotide excision repair factor XPA.

0301 basic medicineRibonuclease IIIDNA RepairDNA damageDNA repairUltraviolet Raysgenetic processes27Article24DEAD-box RNA HelicasesHistones03 medical and health sciencesCell Line TumorHumansResearch ArticlesbiologyLysinefungiEndoribonuclease Dicerfood and beverages37Cell BiologyDNA Repair PathwayHistone-Lysine N-MethyltransferaseCell biologyChromatinXeroderma Pigmentosum Group A ProteinRepressor Proteinsenzymes and coenzymes (carbohydrates)030104 developmental biologyHistoneHEK293 Cellsbiology.proteinBiocatalysisDicerNucleotide excision repairDNA DamageThe Journal of Cell Biology
researchProduct

Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis

2015

Aging is a natural process characterized by the declining ability of the different organs and tissues to respond to stress, increasing homeostatic imbalance and risk of disease. Osteoarthritis (OA) is a multifactorial disease in which cartilage degradation is a central feature. Aging is the main risk factor for OA. In OA cartilage, a decrease in the number of chondrocytes and in their ability to regenerate the extracellular matrix and adequately respond to stress has been described. OA chondrocytes show a senescence secretory phenotype (SSP) consisting on the overproduction of cytokines (interleukins 1 and 6), growth factors (e.g., epidermal growth factor) and matrix metalloproteinases (MMP…

0301 basic medicineSenescenceMAPK/ERK pathwayAgingProgrammed cell deathDNA damageBiologymedicine.disease_causeBiochemistryChondrocyteEpigenesis Genetic03 medical and health sciencesChondrocytesOsteoarthritisAutophagymedicineAnimalsHumansMolecular Targeted TherapyEpigeneticsCellular SenescencePharmacologyAutophagyDNA MethylationCell biologyMicroRNAsOxidative Stress030104 developmental biologymedicine.anatomical_structureImmunologyReactive Oxygen SpeciesOxidative stressDNA DamageBiochemical Pharmacology
researchProduct

Telomeres and telomerase in risk assessment of cardiovascular diseases

2020

Telomeres are repetitive nucleoprotein structures located at the ends of chromosomes. Reduction in the number of repetitions causes cell senescence. Cells with high proliferative potential age with each replication cycle. Post- mitotic cells (e.g. cardiovascular cells) have a different aging mechanism. During the aging of cardiovascular system cells, permanent DNA damage occurs in the telomeric regions caused by mitochondrial dysfunction, which is a phenomenon independent of cell proliferation and telomere length. Mitochondrial dysfunction is accompanied by increased production of reactive oxygen species and development of inflammation. This phe-nomenon in the cells of blood vessels can lea…

0301 basic medicineSenescenceTelomeraseDNA damageCellInflammationBiologySenescence03 medical and health sciences0302 clinical medicineHistone H2AmedicineAnimalsHumansTelomeraseCellular SenescenceTelomere ShorteningCell growthCell BiologyTelomere030104 developmental biologymedicine.anatomical_structureTelomeresCardiovascular diseases030220 oncology & carcinogenesisCancer researchmedicine.symptomDNA DamageExperimental Cell Research
researchProduct

Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle

2017

Maintenance of a minimal telomere length is essential to prevent cellular senescence. When critically short telomeres arise in the absence of telomerase, they can be repaired by homology-directed repair (HDR) to prevent premature senescence onset. It is unclear why specifically the shortest telomeres are targeted for HDR. We demonstrate that the non-coding RNA TERRA accumulates as HDR-promoting RNA-DNA hybrids (R-loops) preferentially at very short telomeres. The increased level of TERRA and R-loops, exclusively at short telomeres, is due to a local defect in RNA degradation by the Rat1 and RNase H2 nucleases, respectively. Consequently, the coordination of TERRA degradation with telomere r…

0301 basic medicineSenescenceTelomeraseSaccharomyces cerevisiae ProteinssenescenceDNA damageR-loopTelomere-Binding ProteinsSaccharomyces cerevisiaeBiologyDDRGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesRif2Cellular SenescenceTelomere-binding proteinRNA-DNA hybridtelomereBiochemistry Genetics and Molecular Biology (all)Telomere-Binding ProteinCell CycleRNANucleic Acid HybridizationRecombinational DNA RepairTERRARepressor ProteinMolecular biologyRat1ExoribonucleaseTelomereRepressor Proteins030104 developmental biologyCell AgingExoribonucleasesR-loopRNase H2Cell agingSaccharomyces cerevisiae ProteinDNA Damage
researchProduct

GSE4-loaded nanoparticles a potential therapy for lung fibrosis that enhances pneumocyte growth, reduces apoptosis and DNA damage.

2021

© 2021 The Authors.

0301 basic medicineTelomeraseDNA damageApoptosismacromolecular substancesBleomycintelomeraseBiochemistryPulmonary fibrosisAlveolar cellsAlveolar cells03 medical and health scienceschemistry.chemical_compoundIdiopathic pulmonary fibrosisBleomycin0302 clinical medicineFibrosisPulmonary fibrosisGeneticsmedicineHumansMolecular BiologyTelomeraseLungLungNanopartículespulmonary fibrosisChemistrytechnology industry and agricultureFibrosi pulmonaralveolar cellsrespiratory systemmedicine.diseaseOxidative Stress030104 developmental biologymedicine.anatomical_structureAlveolar Epithelial CellsCancer researchGSE4NanoparticlesCollagenPeptides030217 neurology & neurosurgeryBiotechnologyDNA DamageFASEB journal : official publication of the Federation of American Societies for Experimental BiologyREFERENCES
researchProduct

Iwr1 facilitates RNA polymerase II dynamics during transcription elongation.

2017

Iwr1 is an RNA polymerase II (RNPII) interacting protein that directs nuclear import of the enzyme which has been previously assembled in the cytoplasm. Here we present genetic and molecular evidence that links Iwr1 with transcription. Our results indicate that Iwr1 interacts with RNPII during elongation and is involved in the disassembly of the enzyme from chromatin. This function is especially important in resolving problems posed by damage-arrested RNPII, as shown by the sensitivity of iwr1 mutants to genotoxic drugs and the Iwr1's genetic interactions with RNPII degradation pathway mutants. Moreover, absence of Iwr1 causes genome instability that is enhanced by defects in the DNA repair…

0301 basic medicineTranscription factoriesCytoplasmSaccharomyces cerevisiae ProteinsDNA RepairTranscription GeneticBiophysicsActive Transport Cell NucleusRNA polymerase IISaccharomyces cerevisiaeBiochemistryGenomic Instability03 medical and health sciencesStructural BiologyGeneticsMolecular BiologyRNA polymerase II holoenzymePolymeraseCell NucleusbiologyGeneral transcription factorMolecular biologyChromatinCell biology030104 developmental biologybiology.proteinTranscription factor II FRNA Polymerase IITranscription factor II DCarrier ProteinsTranscription factor II BDNA DamageBiochimica et biophysica acta. Gene regulatory mechanisms
researchProduct

Co-chaperone Hsp70/Hsp90-organizing protein (Hop) is required for transposon silencing and Piwi-interacting RNA (piRNA) biogenesis

2017

Piwi-interacting RNAs (piRNAs) are 26–30-nucleotide germ line-specific small non-coding RNAs that have evolutionarily conserved function in mobile genetic element (transposons) silencing and maintenance of genome integrity. Drosophila Hsp70/90-organizing protein homolog (Hop), a co-chaperone, interacts with piRNA-binding protein Piwi and mediates silencing of phenotypic variations. However, it is not known whether Hop has a direct role in piRNA biogenesis and transposon silencing. Here, we show that knockdown of Hop in the germ line nurse cells (GLKD) of Drosophila ovaries leads to activation of transposons. Hop GLKD females can lay eggs at the same rate as wild-type counterparts, but the e…

0301 basic medicineTransposable elementendocrine systemPiwi-interacting RNABiologyBiochemistryGenomic InstabilityHop (networking)Animals Genetically Modified03 medical and health sciences0302 clinical medicineAnimalsDrosophila ProteinsGene silencingGene SilencingRNA Small InterferingMolecular BiologyJanus KinasesGeneticsGene knockdownurogenital systemOvaryRNACell BiologyPhenotypeDrosophila melanogasterGerm Cells030104 developmental biologyAccelerated CommunicationsArgonaute ProteinsDNA Transposable ElementsFemale030217 neurology & neurosurgeryBiogenesisDNA DamageTranscription FactorsJournal of Biological Chemistry
researchProduct

Hypothesis: Etiologic and Molecular Mechanistic Leads for Sporadic Neurodegenerative Diseases Based on Experience With Western Pacific ALS/PDC

2019

Seventy years of research on Western Pacific amyotrophic lateral sclerosis and Parkinsonism-dementia Complex (ALS/PDC) have provided invaluable data on the etiology, molecular pathogenesis and latency of this disappearing, largely environmental neurodegenerative disease. ALS/PDC is linked to genotoxic chemicals (notably methylazoxymethanol, MAM) derived from seed of the cycad plant (Cycas spp.) that were used as a traditional food and/or medicine in all three disease-affected Western Pacific populations. MAM, nitrosamines and hydrazines generate methyl free radicals that damage DNA (in the form of O6-methylguanine lesions) that can induce mutations in cycling cells and degenerative changes …

0301 basic medicineamyotrophic lateral sclerosisDNA damageDiseaseBiologylcsh:RC346-429Environmental - originProgressive supranuclear palsy03 medical and health sciences0302 clinical medicineHypothesis and TheorymedicinenitrosaminesAmyotrophic lateral sclerosislcsh:Neurology. Diseases of the nervous systemhydrazinesprogressive supranuclear palsymedicine.diseaseatypical parkinsonism030104 developmental biologyBrain degenerationNeurologyImmunologyEtiologycycad methylazoxymethanol and L-BMAADNA damageNeurology (clinical)Alzheimer's diseaseAlzheimer disease030217 neurology & neurosurgeryFrontiers in Neurology
researchProduct