Search results for "DNA METHYLATION"
showing 10 items of 392 documents
Genetic and Epigenetic Characteristics of Inflammatory Bowel Disease-Associated Colorectal Cancer.
2021
doi: 10.1053/j.gastro.2021.04.042 Background & Aims Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder associated with an elevated risk of colorectal cancer (CRC). IBD-associated CRC (IBD-CRC) may represent a distinct pathway of tumorigenesis compared to sporadic CRC (sCRC). Our aim was to comprehensively characterize IBD-associated tumorigenesis integrating multiple high-throughput approaches, and to compare the results with in-house data sets from sCRCs. Methods Whole-genome sequencing, single nucleotide polymorphism arrays, RNA sequencing, genome-wide methylation analysis, and immunohistochemistry were performed using fresh-frozen and formalin-fixed tissue sam…
Genome wide DNA methylation profiling identifies specific epigenetic features in high-risk cutaneous squamous cell carcinoma
2019
ABSTRACTCutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer. Although most cSCCs have good prognosis, a subgroup of high-risk cSCC has a higher frequency of recurrence and mortality. Therefore, the identification of molecular risk factors associated with this aggressive subtype is of major interest. In this work we carried out a global-scale approach to investigate the DNA-methylation profile in patients at different stages, from premalignant actinic keratosis to low-risk invasive and high-risk non-metastatic and metastatic cSCC. The results showed massive non-sequential changes in DNA-methylome and identified a minimal methylation signature that discriminates bet…
iDamIDseq and iDEAR: an improved method and computational pipeline to profile chromatin-binding proteins
2016
DNA adenine methyltransferase identification (DamID) has emerged as an alternative method to profile protein-DNA interactions; however, critical issues limit its widespread applicability. Here, we present iDamIDseq, a protocol that improves specificity and sensitivity by inverting the steps DpnI-DpnII and adding steps that involve a phosphatase and exonuclease. To determine genome-wide protein-DNA interactions efficiently, we present the analysis tool iDEAR (iDamIDseq Enrichment Analysis with R). The combination of DamID and iDEAR permits the establishment of consistent profiles for transcription factors, even in transient assays, as we exemplify using the small teleost medaka (Oryzias lati…
Advances in Understanding the Molecular Basis of the Mediterranean Diet Effect
2018
Posted with permission from the Annual Review of Food Science and Technology, Volume 9 by Annual Reviews, http://www.annualreviews.org. Increasingly, studies showing the protective effects of the Mediterranean diet (MedDiet) on different diseases (cardiovascular, diabetes, some cancers, and even total mortality and aging indicators) are being published. The scientific evidence level for each outcome is variable, and new studies are needed to better understand the molecular mechanisms whereby the MedDiet may exercise its effects. Here, we present recent advances in understanding the molecular basis of MedDiet effects, mainly focusing on cardiovascular diseases but also discussing other relat…
Oxidative stress-mediated alterations in histone post-translational modifications
2021
Abstract Epigenetic regulation of gene expression provides a finely tuned response capacity for cells when undergoing environmental changes. However, in the context of human physiology or disease, any cellular imbalance that modulates homeostasis has the potential to trigger molecular changes that result either in physiological adaptation to a new situation or pathological conditions. These effects are partly due to alterations in the functionality of epigenetic regulators, which cause long-term and often heritable changes in cell lineages. As such, free radicals resulting from unbalanced/extended oxidative stress have been proved to act as modulators of epigenetic agents, resulting in alte…
Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis
2016
Background Obesity has tremendous impact on the health systems. Its epigenetic bases are unclear. MacroH2A1 is a variant of histone H2A, present in two alternatively exon-spliced isoforms macroH2A1.1 and macroH2A1.2, regulating cell plasticity and proliferation, during pluripotency and tumorigenesis. Their role in adipose tissue plasticity is unknown. Results Here, we show evidence that macroH2A1.1 protein levels in the visceral adipose tissue of obese humans positively correlate with BMI, while macroH2A1.2 is nearly absent. We thus introduced a constitutive GFP-tagged transgene for macroH2A1.2 in mice, and we characterized their metabolic health upon being fed a standard chow diet or a hig…
2018
Secondary sexual trait expression can be influenced by fixed individual factors (such as genetic quality) as well as by dynamic factors (such as age and environmentally induced gene expression) that may be associated with variation in condition or quality. In particular, melanin-based traits are known to relate to condition and there is a well-characterized genetic pathway underpinning their expression. However, the mechanisms linking variable trait expression to genetic quality remain unclear. One plausible mechanism is that genetic quality could influence trait expression via differential methylation and differential gene expression. We therefore conducted a pilot study examining DNA meth…
Epigenetic regulation of DNA repair genes and implications for tumor therapy
2017
DNA repair represents the first barrier against genotoxic stress causing metabolic changes, inflammation and cancer. Besides its role in preventing cancer, DNA repair needs also to be considered during cancer treatment with radiation and DNA damaging drugs as it impacts therapy outcome. The DNA repair capacity is mainly governed by the expression level of repair genes. Alterations in the expression of repair genes can occur due to mutations in their coding or promoter region, changes in the expression of transcription factors activating or repressing these genes, and/or epigenetic factors changing histone modifications and CpG promoter methylation or demethylation levels. In this review we …
2015
Alternative splicing is an important mechanism in eukaryotes that expands the transcriptome and proteome significantly. It plays an important role in a number of biological processes. Understanding its regulation is hence an important challenge. Recently, increasing evidence has been collected that supports an involvement of intragenic DNA methylation in the regulation of alternative splicing. The exact mechanisms of regulation, however, are largely unknown, and speculated to be complex: different methylation profiles might exist, each of which could be associated with a different regulation mechanism. We present a computational technique that is able to determine such stable methylation pa…
Transcriptional and Epigenetic Control of Astrogliogenesis
2017
Abstract Astrocytes exert pivotal functions in the brain ranging from homeostasis to plasticity and their malfunctioning may contribute to neurodegenerative diseases. With increased recognition of their importance, more efforts are being dedicated to decoding the molecular mechanisms that control the generation of astrocytes from neural stem cells, a process referred to as astrogliogenesis. In this chapter, we highlight the discoveries that have shed light on the role of transcription factors, DNA methylation, histone modifications, and microRNAs in driving the transcriptional programs that underlie astrocyte generation. We further discuss the current understanding of gene regulatory pathwa…