Search results for "DNA sequencing"
showing 10 items of 237 documents
SWMapper: Scalable Read Mapper on SunWay TaihuLight
2020
With the rapid development of next-generation sequencing (NGS) technologies, high throughput sequencing platforms continuously produce large amounts of short read DNA data at low cost. Read mapping is a performance-critical task, being one of the first stages required for many different types of NGS analysis pipelines. We present SWMapper — a scalable and efficient read mapper for the Sunway TaihuLight supercomputer. A number of optimization techniques are proposed to achieve high performance on its heterogeneous architecture which are centered around a memory-efficient succinct hash index data structure including seed filtration, duplicate removal, dynamic scheduling, asynchronous data tra…
Next‐Generation Sequencing‐Based RiboMethSeq Protocol for Analysis of tRNA 2′‐O‐Methylation
2017
Analysis of RNA modifications by traditional physico‐chemical approaches is labor intensive, requires substantial amounts of input material and only allows site‐by‐site measurements. The recent development of qualitative and quantitative approaches based on next‐generation sequencing (NGS) opens new perspectives for the analysis of various cellular RNA species. The Illumina sequencing‐based RiboMethSeq protocol was initially developed and successfully applied for mapping of ribosomal RNA (rRNA) 2′‐O‐methylations. This method also gives excellent results in the quantitative analysis of rRNA modifications in different species and under varying growth condi…
High-throughput sequencing for 1-methyladenosine (m1A) mapping in RNA
2016
Abstract Detection and mapping of modified nucleotides in RNAs is a difficult and laborious task. Several physico-chemical approaches based on differential properties of modified nucleotides can be used, however, most of these methods do not allow high-throughput analysis. Here we describe in details a method for mapping of rather common 1-methyladenosine (m1A) residues using high-throughput next generation sequencing (NGS). Since m1A residues block primer extension during reverse transcription (RT), the accumulation of abortive products as well as the nucleotide misincorporation can be detected in the sequencing data. The described library preparation protocol allows to capture both types …
Molecular diagnosis of PIK3CA-related overgrowth spectrum (PROS) in 162 patients and recommendations for genetic testing.
2017
Postzygotic activating mutations of PIK3CA cause a wide range of mosaic disorders collectively referred to as PIK3CA-related overgrowth spectrum (PROS). We describe the diagnostic yield and characteristics of PIK3CA sequencing in PROS. We performed ultradeep next-generation sequencing (NGS) of PIK3CA in various tissues from 162 patients referred to our clinical laboratory and assessed diagnostic yield by phenotype and tissue tested. We identified disease-causing mutations in 66.7% (108/162) of patients, with mutant allele levels as low as 1%. The diagnostic rate was higher (74%) in syndromic than in isolated cases (35.5%; P = 9.03 × 10−5). We identified 40 different mutations and found stro…
Incomplete Timothy syndrome secondary to a mosaic mutation of the CACNA1C gene diagnosed using next-generation sequencing.
2016
Autosomal dominant genetic diseases can occur de novo and in the form of somatic mosaicism, which can give rise to a less severe phenotype, and make diagnosis more difficult given the sensitivity limits of the methods used. We report the case of female child with a history of surgery for syndactyly of the hands and feet, who was admitted at 6 years of age to a pediatric intensive care unit following cardiac arrest. The electrocardiogram (ECG) showed a long QT interval that on occasions reached 500 ms. Despite the absence of facial dysmorphism and the presence of normal psychomotor development, a diagnosis of Timothy syndrome was made given the association of syndactyly and the ECG features.…
Validating comprehensive next-generation sequencing results for precision oncology : The NCT/DKTK molecularly aided stratification for tumor eradicat…
2022
Purpose Rapidly evolving genomics technologies, in particular comprehensive next-generation sequencing (NGS), have led to exponential growth in the understanding of cancer biology, shifting oncology toward personalized treatment strategies. However, comprehensive NGS approaches, such as whole-exome sequencing, have limitations that are related to the technology itself as well as to the input source. Hence, clinical implementation of comprehensive NGS in a quality-controlled diagnostic workflow requires both the standardization of sequencing procedures and continuous validation of sequencing results by orthogonal methods in an ongoing program to enable the determination of key test parameter…
Whole-genome sequencing of Neisseria gonorrhoeae in a forensic transmission case.
2019
Abstract Molecular epidemiology and phylogenetic analyses are frequently used in the investigation of viral transmission cases in forensic contexts. Here, we present the methods and results of the analysis of a bacterial transmission episode in an alleged child abuse case using complete genome sequences obtained by high-throughput sequencing (HTS) methods. We obtained genomes of Neisseria gonorrhoeae from the victim, the suspect, and 29 unrelated controls. The analysis of the genomes revealed that the victim and suspect isolates had identical sequences in both the bacterial chromosome and the single plasmid present in them. One of the local controls was very similar (differing in only 2 SNP…
Reanalysis of Chinese Treponema pallidum samples: all Chinese samples cluster with SS14-like group of syphilis-causing treponemes
2018
[Objective]: Treponema pallidum subsp. pallidum (TPA) is the causative agent of syphilis. Genetic analyses of TPA reference strains and human clinical isolates have revealed two genetically distinct groups of syphilis-causing treponemes, called Nichols-like and SS14-like groups. So far, no genetic intermediates, i.e. strains containing a mixed pattern of Nichols-like and SS14-like genomic sequences, have been identifed. Recently, Sun et al. (Oncotarget 2016. https://doi. org/10.18632/oncotarget.10154) described a new “phylogenetic group” (called Lineage 2) among Chinese TPA strains. This lineage exhibited a “mosaic genomic structure” of Nichols-like and SS14-like lineages.
Differential binding cell-SELEX method to identify cell-specific aptamers using high-throughput sequencing
2018
AbstractAptamers have in recent years emerged as a viable alternative to antibodies. High-throughput sequencing (HTS) has revolutionized aptamer research by increasing the number of reads from a few (using Sanger sequencing) to millions (using an HTS approach). Despite the availability and advantages of HTS compared to Sanger sequencing, there are only 50 aptamer HTS sequencing samples available on public databases. HTS data in aptamer research are primarily used to compare sequence enrichment between subsequent selection cycles. This approach does not take full advantage of HTS because the enrichment of sequences during selection can be due to inefficient negative selection when using live…
Next-generation sequencing: big data meets high performance computing
2017
The progress of next-generation sequencing has a major impact on medical and genomic research. This high-throughput technology can now produce billions of short DNA or RNA fragments in excess of a few terabytes of data in a single run. This leads to massive datasets used by a wide range of applications including personalized cancer treatment and precision medicine. In addition to the hugely increased throughput, the cost of using high-throughput technologies has been dramatically decreasing. A low sequencing cost of around US$1000 per genome has now rendered large population-scale projects feasible. However, to make effective use of the produced data, the design of big data algorithms and t…