Search results for "DOMAINS"

showing 10 items of 269 documents

Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2.

2006

International audience; Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that induces cancer cell death by apoptosis with some selectivity. TRAIL-induced apoptosis is mediated by the transmembrane receptors death receptor 4 (DR4) (also known as TRAIL-R1) and DR5 (TRAIL-R2). TRAIL can also bind decoy receptor 1 (DcR1) (TRAIL-R3) and DcR2 (TRAIL-R4) that fail to induce apoptosis since they lack and have a truncated cytoplasmic death domain, respectively. In addition, DcR1 and DcR2 inhibit DR4- and DR5-mediated, TRAIL-induced apoptosis and we demonstrate here that this occurs through distinct mechanisms. While DcR1 prevents the assembly of the…

MESH : Hela CellsMESH: Membrane GlycoproteinsMESH: Membrane MicrodomainsDecoy Receptor 1ApoptosisMESH : Membrane GlycoproteinsReceptors Tumor Necrosis FactorTNF-Related Apoptosis-Inducing LigandMESH : TNF-Related Apoptosis-Inducing LigandJurkat Cells0302 clinical medicineMESH : Tumor Necrosis Factor Decoy ReceptorsMESH: Jurkat CellsDecoy receptorsReceptorCells CulturedMESH : Jurkat CellsMESH : Tumor Necrosis Factor-alpha0303 health sciencesMembrane GlycoproteinsMESH : Protein BindingArticlesMESH : Tumor Necrosis Factor Receptor-Associated Peptides and ProteinsTumor Necrosis Factor Receptor-Associated Peptides and ProteinsCell biology030220 oncology & carcinogenesisCaspasesDeath-inducing signaling complexApoptosis/drug effects; Apoptosis Regulatory Proteins/antagonists & inhibitors; Apoptosis Regulatory Proteins/pharmacology; Caspases/metabolism; Cells Cultured; Death Domain Receptor Signaling Adaptor Proteins; Enzyme Activation/drug effects; GPI-Linked Proteins; HeLa Cells; Humans; Jurkat Cells; Membrane Glycoproteins/antagonists & inhibitors; Membrane Glycoproteins/pharmacology; Membrane Microdomains/drug effects; Protein Binding/drug effects; Receptors TNF-Related Apoptosis-Inducing Ligand; Receptors Tumor Necrosis Factor/metabolism; TNF-Related Apoptosis-Inducing Ligand; Tumor Necrosis Factor Decoy Receptors; Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism; Tumor Necrosis Factor-alpha/antagonists & inhibitors; Tumor Necrosis Factor-alpha/pharmacologyMESH : Apoptosis Regulatory ProteinsMESH: TNF-Related Apoptosis-Inducing LigandProtein BindingMESH: Cells CulturedDeath Domain Receptor Signaling Adaptor ProteinsMESH: Enzyme ActivationBiologyMESH: Tumor Necrosis Factor Receptor-Associated Peptides and ProteinsGPI-Linked Proteins03 medical and health sciencesMembrane MicrodomainsCell surface receptorMESH : Cells Cultured[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyReceptors Tumor Necrosis Factor Member 10cHumansMESH: Protein Binding[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Receptors TNF-Related Apoptosis-Inducing LigandMESH : Receptors TNF-Related Apoptosis-Inducing LigandMolecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biology030304 developmental biologyDeath domainMESH: CaspasesMESH: HumansTumor Necrosis Factor-alphaMESH: Apoptosis Regulatory ProteinsMESH: ApoptosisMESH : HumansCell BiologyMESH: Receptors Tumor Necrosis FactorMESH: Tumor Necrosis Factor Decoy ReceptorsMESH : Receptors Tumor Necrosis FactorEnzyme ActivationMESH: Hela CellsReceptors TNF-Related Apoptosis-Inducing LigandTumor Necrosis Factor Decoy ReceptorsApoptosisMESH: Tumor Necrosis Factor-alphaMESH : Membrane MicrodomainsMESH : CaspasesApoptosis Regulatory ProteinsMESH : Enzyme ActivationMESH : ApoptosisMESH : Death Domain Receptor Signaling Adaptor ProteinsTumor Necrosis Factor Decoy ReceptorsHeLa CellsMESH: Death Domain Receptor Signaling Adaptor Proteins
researchProduct

S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells.

2011

International audience; BACKGROUND & AIMS: Fas belongs to the family of tumor necrosis factor receptors which induce apoptosis. Many cancer cells express Fas but do not undergo Fas-mediated apoptosis. Nitric oxide reverses this resistance by increasing levels of Fas at the plasma membrane. We studied the mechanisms by which NO affects Fas function. METHODS: Colon and mammary cancer cell lines were incubated with the NO donor glyceryl trinitrate or lipid A; S-nitrosylation of Fas was monitored using the biotin switch assay. Fas constructs that contained mutations at cysteine residues that prevent S-nitrosylation were used to investigate the involvement of S-nitrosylation in Fas-mediated cell…

MESH: NitroglycerinMESH: Signal TransductionTime FactorsMESH: Membrane MicrodomainsApoptosisMESH : Fas Ligand ProteinCytoplasmic partMESH: Lipid AFas ligandMiceNitroglycerin0302 clinical medicineMESH : Protein TransportMESH : FemaleMESH: AnimalsFADDLipid raft0303 health sciencesTumorbiologyColon CancerMESH : Lipid AMESH : BiotinylationGastroenterologyFas receptorMESH: Antigens CD95Protein TransportLipid AMESH : Colonic NeoplasmsMESH : Nitric OxideMESH : Nitric Oxide Donors030220 oncology & carcinogenesisColonic NeoplasmsDeath-inducing signaling complexFemale[ SDV.MHEP.HEG ] Life Sciences [q-bio]/Human health and pathology/Hépatology and GastroenterologyMESH : MutationMESH : TransfectionSignal TransductionMESH : Time FactorsMESH: Protein TransportFas Ligand ProteinMESH : Mammary Neoplasms ExperimentalMESH: MutationMESH: Cell Line TumorMESH: Mammary Neoplasms ExperimentalNitric OxideTransfectionCaspase 803 medical and health sciencesMembrane MicrodomainsCell Line TumorMESH : MiceAnimalsHumansBiotinylationNitric Oxide DonorsMESH: BiotinylationCysteinefas ReceptorMESH: MiceMESH : Protein Processing Post-Translational030304 developmental biologyMESH : Signal TransductionMESH: Colonic NeoplasmsMESH : CysteineMESH: HumansHepatologyMESH : Cell Line TumorMESH: ApoptosisMESH: TransfectionMESH : HumansMESH: Time FactorsMammary Neoplasms Experimental[SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and GastroenterologyMESH: CysteineMESH: Nitric Oxide DonorsMolecular biologySignalingMESH: Fas Ligand ProteinMESH : NitroglycerinApoptosisLocalizationMESH: Nitric OxideMESH: Protein Processing Post-TranslationalMutationbiology.proteinMESH : Membrane MicrodomainsMESH : AnimalsMESH : Antigens CD95Protein Processing Post-TranslationalMESH: FemaleMESH : Apoptosis
researchProduct

Partitioning of Pyrene-Labeled Phospho- and Sphingolipids between Ordered and Disordered Bilayer Domains

2004

AbstractHere we have studied how the length of the pyrene-labeled acyl chain (n) of a phosphatidylcholine, sphingomyelin, or galactosylceramide affects the partitioning of these lipids between 1), gel and fluid domains coexisting in bovine brain sphingomyelin (BB-SM) or BB-SM/spin-labeled phosphatidylcholine (PC) bilayers or 2), between liquid-disordered and liquid-ordered domains in BB-SM/spin-labeled PC/cholesterol bilayers. The partitioning behavior was deduced either from modeling of pyrene excimer/monomer ratio versus temperature plots, or from quenching of the pyrene monomer fluorescence by spin-labeled PC. New methods were developed to model excimer formation and pyrene lipid quenchi…

Macromolecular SubstancesMembrane FluidityLipid BilayersMolecular ConformationBiophysicsPhase Transition03 medical and health scienceschemistry.chemical_compoundMembrane MicrodomainsPhosphatidylcholineMembrane fluidityFluorometryLipid bilayerPhospholipids030304 developmental biologySphingolipids0303 health sciencesPyrenesMembranesQuenching (fluorescence)Staining and LabelingChemistry030302 biochemistry & molecular biologyTemperatureBiological membraneModels ChemicalBiochemistryDipalmitoylphosphatidylcholineLiposomesBiophysicsPyrenelipids (amino acids peptides and proteins)SphingomyelinBiophysical Journal
researchProduct

The STAT3 Inhibitor Galiellalactone Reduces IL6-Mediated AR Activity in Benign and Malignant Prostate Models

2018

IL6/STAT3 signaling is associated with endocrine therapy resistance in prostate cancer, but therapies targeting this pathway in prostate cancer were unsuccessful in clinical trials so far. The mechanistic explanation for this phenomenon is currently unclear; however, IL6 has pleiotropic effects on a number of signaling pathways, including the androgen receptor (AR). Therefore, we investigated IL6-mediated AR activation in prostate cancer cell lines and ex vivo primary prostate tissue cultures in order to gain a better understanding on how to inhibit this process for future clinical trials. IL6 significantly increased androgen-dependent AR activity in LNCaP cells but importantly did not infl…

Male0301 basic medicineCancer ResearchINTERLEUKIN-6LactonesProstate cancerLIGAND-INDEPENDENT ACTIVATION0302 clinical medicineProstateDEPRIVATIONANDROGEN RECEPTORGLUCOCORTICOID-RECEPTORmedicine.anatomical_structureOncologyReceptors Androgen030220 oncology & carcinogenesisAndrogensSILTUXIMAB CNTO 328GROWTHSIGNAL TRANSDUCERSignal transductionLife Sciences & BiomedicineProtein BindingSignal TransductionSTAT3 Transcription FactorENZALUTAMIDEmedicine.drug_classMice NudeModels BiologicalTMPRSS203 medical and health sciencesProtein DomainsCell Line TumorLNCaPmedicineAnimalsHumansCastrationCANCER CELLSScience & TechnologyInterleukin-6business.industryProstatic NeoplasmsDNAmedicine.diseaseAndrogenXenograft Model Antitumor AssaysAndrogen receptor030104 developmental biologyCancer researchbusinessEx vivo
researchProduct

Mating systems and protein–protein interactions determine evolutionary rates of primate sperm proteins

2013

To assess the relative impact of functional constraint and post-mating sexual selection on sequence evolution of reproductive proteins, we examined 169 primate sperm proteins. In order to recognize potential genome-wide trends, we additionally analysed a sample of altogether 318 non-reproductive (brain and postsynaptic) proteins. Based on cDNAs of eight primate species (Anthropoidea), we observed that pre-mating sperm proteins engaged in sperm composition and assembly show significantly lower incidence of site-specific positive selection and overall lower non-synonymous to synonymous substitution rates ( d N / d S ) across sites as compared with post-mating sperm proteins involved in capac…

Male1001DNA ComplementaryAcrosome reactionBiologysperm competitionGeneral Biochemistry Genetics and Molecular BiologyProtein–protein interactionEvolution MolecularSexual Behavior Animalbrain proteinsCapacitationTestisAnimalsmating systemsexual selectionProtein Interaction Domains and MotifsSperm competitionResearch Articlesreproductive and urinary physiologyGeneral Environmental ScienceGeneticsGeneral Immunology and MicrobiologyHyperactivation70HaplorhiniSequence Analysis DNAGeneral MedicineMating Preference Animal129Mating systemSpermatozoaSpermfunctional constraintSexual selectionbehavior and behavior mechanismssperm proteinsGeneral Agricultural and Biological SciencesProceedings of the Royal Society B: Biological Sciences
researchProduct

De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurologi…

2019

Abstract KCNMA1 encodes the large-conductance Ca2+- and voltage-activated K+ (BK) potassium channel α-subunit, and pathogenic gain-of-function variants in this gene have been associated with a dominant form of generalized epilepsy and paroxysmal dyskinesia. Here, we genetically and functionally characterize eight novel loss-of-function (LoF) variants of KCNMA1. Genome or exome sequencing and the participation in the international Matchmaker Exchange effort allowed for the identification of novel KCNMA1 variants. Patch clamping was used to assess functionality of mutant BK channels. The KCNMA1 variants p.(Ser351Tyr), p.(Gly356Arg), p.(Gly375Arg), p.(Asn449fs) and p.(Ile663Val) abolished the …

MaleAtaxiaGenotypeDevelopmental DisabilitiesMutation MissenseBiology03 medical and health sciences0302 clinical medicineNeurodevelopmental disorderProtein DomainsLoss of Function MutationGeneticsmedicineHumansMissense mutationAbnormalities MultipleGenetic Predisposition to DiseaseProtein Interaction Domains and MotifsAlleleLarge-Conductance Calcium-Activated Potassium Channel alpha SubunitsMolecular BiologyAllelesGenetic Association StudiesGenetics (clinical)Loss functionExome sequencing030304 developmental biologyGenetics0303 health sciencesInfant NewbornGeneral MedicineParoxysmal dyskinesiamedicine.diseaseElectrophysiological PhenomenaPedigreePhenotypeAmino Acid SubstitutionSpeech delayFemaleGeneral Articlemedicine.symptom030217 neurology & neurosurgeryHuman Molecular Genetics
researchProduct

Delayed post-ischemic administration of CDP-choline increases EAAT2 association to lipid rafts and affords neuroprotection in experimental stroke

2007

Glutamate transport is the only mechanism for maintaining extracellular glutamate concentrations below excitotoxic levels. Among glutamate transporters, EAAT2 is responsible for up to 90% of all glutamate transport and has been reported to be associated to lipid rafts. In this context, we have recently shown that CDP-choline induces EAAT2 translocation to the membrane. Since CDP-choline preserves membrane stability by recovering levels of sphingomyelin, a glycosphingolipid present in lipid rafts, we have decided to investigate whether CDP-choline increases association of EAAT2 transporter to lipid rafts. Flotillin-1 was used as a marker of lipid rafts due to its known association to these m…

MaleCytidine Diphosphate CholineTime FactorsIschemiaGlutamic AcidContext (language use)PharmacologyBiologyCell FractionationNeuroprotectionlcsh:RC321-571chemistry.chemical_compoundMembrane MicrodomainsIschemiamedicineAnimalsCholineLipid raftlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryGlutamate transportersGlutamate receptorInfarction Middle Cerebral ArteryGlutamic acidmedicine.diseaseRats Inbred F344Ratscarbohydrates (lipids)Disease Models AnimalNeuroprotective AgentsExcitatory Amino Acid Transporter 2Gene Expression RegulationNeurologyBiochemistrychemistrylipids (amino acids peptides and proteins)GlutamateSphingomyelinNeurobiology of Disease
researchProduct

Synaptosomes: new vesicles for neuronal mitochondrial transplantation

2021

Abstract Background Mitochondrial dysfunction is a critical factor in the onset and progression of neurodegenerative diseases. Recently, mitochondrial transplantation has been advised as an innovative and attractive strategy to transfer and replace damaged mitochondria. Here we propose, for the first time, to use rat brain extracted synaptosomes, a subcellular fraction of isolated synaptic terminal that contains mitochondria, as mitochondrial delivery systems. Results Synaptosome preparation was validated by the presence of Synaptophysin and PSD95. Synaptosomes were characterized in terms of dimension, zeta potential, polydispersity index and number of particles/ml. Nile Red or CTX-FITCH la…

MaleFIS1Mitochondrial DNAlcsh:Medical technologylcsh:BiotechnologyBiomedical EngineeringPharmaceutical ScienceMedicine (miscellaneous)BioengineeringMitochondrionDNA MitochondrialApplied Microbiology and BiotechnologyMembrane Potentials03 medical and health sciencesDrug Delivery Systems0302 clinical medicinelcsh:TP248.13-248.65medicineAnimalsHomeostasisProtein Interaction Domains and MotifsNeurodegenerationDelivery system030304 developmental biologyMitochondrial transplantationSynaptosome0303 health sciencesbiologyChemistryResearchCytochrome cNeurodegenerationSynaptosomes Mitochondria Neurodegeneration Delivery system Mitochondrial transplantationCytochromes cmedicine.diseaseRatsCell biologyMitochondriaTransplantationlcsh:R855-855.5Cytoplasmbiology.proteinMolecular Medicine030217 neurology & neurosurgerySubcellular FractionsSynaptosomes
researchProduct

Mutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment

2019

VAMP2 encodes the vesicular SNARE protein VAMP2 (also called synaptobrevin-2). Together with its partners syntaxin-1A and synaptosomal-associated protein 25 (SNAP25), VAMP2 mediates fusion of synaptic vesicles to release neurotransmitters. VAMP2 is essential for vesicular exocytosis and activity-dependent neurotransmitter release. Here, we report five heterozygous de novo mutations in VAMP2 in unrelated individuals presenting with a neurodevelopmental disorder characterized by axial hypotonia (which had been present since birth), intellectual disability, and autistic features. In total, we identified two single-amino-acid deletions and three non-synonymous variants affecting conserved resid…

MaleHeterozygoteAdolescentVesicle-Associated Membrane Protein 2neuronal exocytosisynaptopathyautismsynaptobrevinMembrane FusionExocytosisR-SNARE ProteinsProtein DomainsReportIntellectual DisabilityGeneticsHumansAutistic DisorderChildGenetics (clinical)NeuronsNeurotransmitter Agentsneurodevelopmental disordersvesicle fusionBrainautism; epilepsy; movement disorders; neurodevelopmental disorders; neuronal exocytosis; SNARE; synaptobrevin; synaptopathy; VAMP2; vesicle fusionneuronal exocytosisLipidsMagnetic Resonance Imagingneurodevelopmental disorderautism epilepsy movement disorders neurodevelopmental disorders neuronal exocytosis SNARE synaptobrevin synaptopathy VAMP2 vesicle fusion Genetics Genetics (clinical)Phenotypeautism; epilepsy; movement disorders; neurodevelopmental disorders; neuronal exocytosis; SNARE; synaptobrevin; synaptopathy; VAMP2; vesicle fusion; Genetics; Genetics (clinical)VAMP2SNAREChild PreschoolMutationSynapsesMuscle Hypotoniaepilepsymovement disordersFemalesense organsmovement disorder
researchProduct

A protein quality control pathway regulated by linear ubiquitination.

2019

Neurodegenerative diseases are characterized by the accumulation of misfolded proteins in the brain. Insights into protein quality control mechanisms to prevent neuronal dysfunction and cell death are crucial in developing causal therapies. Here, we report that various disease-associated protein aggregates are modified by the linear ubiquitin chain assembly complex (LUBAC). HOIP, the catalytic component of LUBAC, is recruited to misfolded Huntingtin in a p97/VCP-dependent manner, resulting in the assembly of linear polyubiquitin. As a consequence, the interactive surface of misfolded Huntingtin species is shielded from unwanted interactions, for example with the low complexity sequence doma…

MaleHuntingtinSp1 protein humanProtein aggregationHTT protein humanDeubiquitinating enzymegenetics [Huntington Disease]Micegenetics [Sp1 Transcription Factor]0302 clinical medicineUbiquitinpathology [Brain]Valosin Containing Proteincytology [Fibroblasts]pathology [Neurons]PolyubiquitinCells CulturedMice Knockout0303 health sciencesHuntingtin ProteinGeneral NeuroscienceNF-kappa Bgenetics [Huntingtin Protein]Middle AgedCell biologymetabolism [Polyubiquitin]pathology [Huntington Disease]metabolism [Neurons]metabolism [NF-kappa B]Protein foldingFemalemetabolism [Fibroblasts]Protein BindingSignal TransductionAdultmetabolism [Valosin Containing Protein]Sp1 Transcription Factorcytology [Embryo Mammalian]genetics [Valosin Containing Protein]BiologyGeneral Biochemistry Genetics and Molecular Biologymetabolism [Sp1 Transcription Factor]03 medical and health sciencesddc:570Gene silencingAnimalsHumansmetabolism [Huntington Disease]Protein Interaction Domains and MotifsMolecular Biologymetabolism [Embryo Mammalian]030304 developmental biologyAgedSp1 transcription factorGeneral Immunology and MicrobiologyUbiquitinationProteotoxicitymetabolism [Brain]Case-Control Studiesmetabolism [Huntingtin Protein]biology.proteinProtein Processing Post-Translational030217 neurology & neurosurgerygenetics [NF-kappa B]
researchProduct