Search results for "Data analysis."
showing 10 items of 377 documents
Two Half-Truths Make a Whole? On Bias in Self-Reports and Tracking Data
2019
The pervasive use of mobile information technologies brings new patterns of media usage, but also challenges to the measurement of media exposure. Researchers wishing to, for example, understand the nature of selective exposure on algorithmically driven platforms need to precisely attribute individuals’ exposure to specific content. Prior research has used tracking data to show that survey-based self-reports of media exposure are critically unreliable. So far, however, little effort has been invested into assessing the specific biases of tracking methods themselves. Using data from a multimethod study, we show that tracking data from mobile devices is linked to systematic distortions in sel…
Empirical model evaluation and hypothesis testing
2016
Chapter 5 deals with the empirical model evaluation and the testing of hypotheses. It starts out with the evaluation of the measurement and the structural models, using the PLS algorithm. After the evaluation of the complete model, moderating effects are examined by conducting group comparisons (section 5.4.1) and by investigating interaction effects (5.4.2). After that, selected constructs are further examined by exploratory data analysis (section 5.5).
Basic Statistical Techniques
2012
Exploratory data analysis of environmental governance at local level in the south-west region of Poland
2018
Intra-urban spatial distributions of population and employment : the case of the agglomeration of Dijon, 1999
2003
The aim of this paper is to analyze the intra-urban spatial distributions of population and employment in the agglomeration of Dijon (regional capital of Burgundy, France). We study whether this agglomeration has followed the general tendency of job decentralization observed in most urban areas or whether it is still characterized by a monocentric pattern. In that purpose, we use a sample of 136 observations at the communal and at the IRIS (infra-urban statistical area) levels with 1999 census data and the employment database SIRENE (INSEE). First; we study the spatial pattern of total employment and employment density using exploratory spatial data analysis. Apart from the CBD, few IRIS ar…
Core of communities in bipartite networks
2017
We use the information present in a bipartite network to detect cores of communities of each set of the bipartite system. Cores of communities are found by investigating statistically validated projected networks obtained using information present in the bipartite network. Cores of communities are highly informative and robust with respect to the presence of errors or missing entries in the bipartite network. We assess the statistical robustness of cores by investigating an artificial benchmark network, the co-authorship network, and the actor-movie network. The accuracy and precision of the partition obtained with respect to the reference partition are measured in terms of the adjusted Ran…
Selectivity in Probabilistic Causality: Drawing Arrows from Inputs to Stochastic Outputs
2011
Given a set of several inputs into a system (e.g., independent variables characterizing stimuli) and a set of several stochastically non-independent outputs (e.g., random variables describing different aspects of responses), how can one determine, for each of the outputs, which of the inputs it is influenced by? The problem has applications ranging from modeling pairwise comparisons to reconstructing mental processing architectures to conjoint testing. A necessary and sufficient condition for a given pattern of selective influences is provided by the Joint Distribution Criterion, according to which the problem of "what influences what" is equivalent to that of the existence of a joint distr…
Retrieval of Case 2 Water Quality Parameters with Machine Learning
2018
Water quality parameters are derived applying several machine learning regression methods on the Case2eXtreme dataset (C2X). The used data are based on Hydrolight in-water radiative transfer simulations at Sentinel-3 OLCI wavebands, and the application is done exclusively for absorbing waters with high concentrations of coloured dissolved organic matter (CDOM). The regression approaches are: regularized linear, random forest, Kernel ridge, Gaussian process and support vector regressors. The validation is made with and an independent simulation dataset. A comparison with the OLCI Neural Network Swarm (ONSS) is made as well. The best approached is applied to a sample scene and compared with t…
Gap Filling of Biophysical Parameter Time Series with Multi-Output Gaussian Processes
2018
In this work we evaluate multi-output (MO) Gaussian Process (GP) models based on the linear model of coregionalization (LMC) for estimation of biophysical parameter variables under a gap filling setup. In particular, we focus on LAI and fAPAR over rice areas. We show how this problem cannot be solved with standard single-output (SO) GP models, and how the proposed MO-GP models are able to successfully predict these variables even in high missing data regimes, by implicitly performing an across-domain information transfer.
A Convolutional Neural Network based Cascade Reconstruction for the IceCube Neutrino Observatory
2021
Continued improvements on existing reconstruction methods are vital to the success of high-energy physics experiments, such as the IceCube Neutrino Observatory. In IceCube, further challenges arise as the detector is situated at the geographic South Pole where computational resources are limited. However, to perform real-time analyses and to issue alerts to telescopes around the world, powerful and fast reconstruction methods are desired. Deep neural networks can be extremely powerful, and their usage is computationally inexpensive once the networks are trained. These characteristics make a deep learning-based approach an excellent candidate for the application in IceCube. A reconstruction …