Search results for "Decays"

showing 10 items of 244 documents

Probing the chiral weak Hamiltonian at finite volumes

2006

Non-leptonic kaon decays are often described through an effective chiral weak Hamiltonian, whose couplings ("low-energy constants") encode all non-perturbative QCD physics. It has recently been suggested that these low-energy constants could be determined at finite volumes by matching the non-perturbatively measured three-point correlation functions between the weak Hamiltonian and two left-handed flavour currents, to analytic predictions following from chiral perturbation theory. Here we complete the analytic side in two respects: by inspecting how small ("epsilon-regime") and intermediate or large ("p-regime") quark masses connect to each other, and by including in the discussion the two …

QuarkPhysicsQuantum chromodynamicsNuclear and High Energy PhysicsChiral perturbation theoryHigh Energy Physics - Lattice (hep-lat)FlavourHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaObservableweak decaysPseudoscalarsymbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Latticelattice QCDkaon physicssymbolschiral lagrangiansHamiltonian (quantum mechanics)Mathematical physics
researchProduct

Measurement of the Top Quark Mass Using the Matrix Element Technique in Dilepton Final States

2016

We present a measurement of the top quark mass in ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb-1. The matrix element technique is applied to ttbar events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton + jets final state of ttbar decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt = 173.93 +- 1.84 GeV.

Particle physicsTop quarkCOLLISIONSPAIR PRODUCTIONJET IDENTIFICATIONAstrophysics::High Energy Astrophysical PhenomenaTevatronFOS: Physical sciencesJet (particle physics)Astronomy & Astrophysics01 natural sciencesD0 EXPERIMENTlaw.inventionPhysics Particles & FieldsHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0202 Atomic Molecular Nuclear Particle And Plasma Physicslaw0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HADRON COLLIDERSFermilabHigh Energy Physics010306 general physicsColliderRUN-IIDETECTOR0206 Quantum PhysicsPhysicsScience & Technology010308 nuclear & particles physicsPhysicsSEMILEPTONIC DECAYSHigh Energy Physics::PhenomenologyD0 experimentNuclear & Particles Physics0201 Astronomical And Space SciencesPair productionPhysical SciencesExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHigh Energy Physics::ExperimentCROSS-SECTIONLepton
researchProduct

Limits on the production of the standard model Higgs boson in pp collisions at root s=7 TeV with the ATLAS detector

2011

A search for the Standard Model Higgs boson at the Large Hadron Collider (LHC) running at a centre-of-mass energy of 7 TeV is reported, based on a total integrated luminosity of up to 40 pb−1 collected by the ATLAS detector in 2010. Several Higgs boson decay channels: H→γγ, H→ZZ(∗)→ℓℓℓℓ, H→ZZ→ℓℓνν, H→ZZ→ℓℓqq, H→WW(∗)→ℓνℓν and H→WW→ℓνqq (ℓ is e, μ) are combined in a mass range from 110 GeV to 600 GeV. The highest sensitivity is achieved in the mass range between 160 GeV and 170 GeV, where the expected 95% CL exclusion sensitivity is at Higgs boson production cross sections 2.3 times the Standard Model prediction. Upper limits on the cross section for its production are determined. Models wit…

:Mathematics and natural science: 400::Physics: 430 [VDP]Physics and Astronomy (miscellaneous)Tevatron:Mathematics and natural science: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentPhysicsLarge Hadron ColliderSettore FIS/01 - Fisica SperimentaleSearchATLASTevatronMassless particleLarge Hadron ColliderPhysical SciencesHiggs bosonComputingMethodologies_DOCUMENTANDTEXTPROCESSINGProduction (computer science)Física nuclearLHCParticle Physics - ExperimentQuarkParticle physicsHiggs bosons; pp collisions; ATLASCiências Naturais::Ciências FísicasHiggs bosonAstrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesddc:500.2Massless Particles530Nnlo QCDStandard ModelNuclear physics0103 physical sciencesFysikddc:530High Energy Physics010306 general physicsEngineering (miscellaneous)Ciencias ExactasScience & TechnologyATLAS detectorParton Distributions010308 nuclear & particles physicsProton-proton collisionHigh Energy Physics::PhenomenologyFísicaHadron CollidersExperimental High Energy PhysicsHigh Energy Physics::ExperimentDecaysLeptonEUROPEAN PHYSICAL JOURNAL C
researchProduct

Minimal supersymmetric inverse seesaw: neutrino masses, lepton flavour violation and LHC phenomenology

2009

We study neutrino masses in the framework of the supersymmetric inverse seesaw model. Different from the non-supersymmetric version a minimal realization with just one pair of singlets is sufficient to explain all neutrino data. We compute the neutrino mass matrix up to 1-loop order and show how neutrino data can be described in terms of the model parameters. We then calculate rates for lepton flavour violating (LFV) processes, such as mu -> e gamma and chargino decays to singlet scalar neutrinos. The latter decays are potentially observable at the LHC and show a characteristic decay pattern dictated by the same parameters which generate the observed large neutrino angles.

Nuclear and High Energy PhysicsParticle physicsSupersymmetric Standard ModelPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciences01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)CharginoSeesaw molecular geometry0103 physical sciencesNeutrino Physics010306 general physicsParticle Physics - PhenomenologyPhysicsLarge Hadron Collider010308 nuclear & particles physicsRare DecaysHigh Energy Physics::PhenomenologyFísicaObservableMass matrixHigh Energy Physics - PhenomenologyBeyond Standard ModelHigh Energy Physics::ExperimentNeutrinoPhenomenology (particle physics)Lepton
researchProduct

Prompt and delayed spectroscopy of 203At : Observation of a shears band and a 29/2+ isomeric state

2018

Using fusion-evaporation reactions, a gas-filled recoil separator, recoil-gating technique and recoil-isomer decay tagging technique we have extended the level scheme of 203 At ( N = 118 ) significantly. We have observed an isomeric [ τ = 14.1 ( 3 ) μ s ] state with a spin and parity of 29 / 2 + . The isomeric state is suggested to originate from the π ( h 9 / 2 ) ⊗ ∣ ∣ 202 Po ; 11 − ⟩ coupling, and it is depopulated through 286 keV E 2 and 366 keV E 3 transitions. In addition, we have observed a cascade of magnetic-dipole transitions which is suggested to be generated by the shears mechanism. peerReviewed

level densitiesnuclear spinelectromagnetic transitionsnuclear density functional theorytiheysfunktionaaliteoriaspektroskopialifetimeswidthsenergy levelsNuclear Experimentisomer decaysydinfysiikkanuclear parity
researchProduct

Search for the Associated Production of the Standard-Model Higgs Boson in the All-Hadronic Channel

2009

We report on a search for the standard-model Higgs boson in pp collisions at s=1.96 TeV using an integrated luminosity of 2.0 fb(-1). We look for production of the Higgs boson decaying to a pair of bottom quarks in association with a vector boson V (W or Z) decaying to quarks, resulting in a four-jet final state. Two of the jets are required to have secondary vertices consistent with B-hadron decays. We set the first 95% confidence level upper limit on the VH production cross section with V(-> qq/qq('))H(-> bb) decay for Higgs boson masses of 100-150 GeV/c(2) using data from run II at the Fermilab Tevatron. For m(H)=120 GeV/c(2), we exclude cross sections larger than 38 times the standard-m…

QuarkParticle physicsStandardsFinal stateFermilab TevatronHiggs bosonTevatronFOS: Physical sciencesGeneral Physics and AstronomyElementary particleddc:500.201 natural sciences114 Physical sciencesStandard ModelVector bosonHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Particle decayTellurium compounds0103 physical sciencesJetsB-hadron decaysHigh energy physics010306 general physicsBosonsBosonStandard-model Higgs bosonsPhysicsIntegrated luminosityHIGGS BOSONModel predictionCross section010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyConfidence levelsUpper limits3. Good healthVector bosonProduction cross sectionBottom quarksSecondary verticesHiggs bosonCDFHigh Energy Physics::Experiment
researchProduct

Search for a low-mass scalar Higgs boson decaying to a tau pair in single-photon decays of Y(1S)

2013

We search for a low-mass scalar CP-odd Higgs boson, A(0), produced in the radiative decay of the upsilon resonance and decaying into a tau(+)tau(-) pair: Y(1S) -> gamma A(0). The production of Y(1S) mesons is tagged by Y(2S) -> pi(+)pi(-) Y(1S) transitions, using a sample of (98.3 +/- 0.9) x 10(6) Y(2S) mesons collected by the BABAR detector. We find no evidence for a Higgs boson in the mass range 3: 5 <= m(A)0 <= 9: 2 GeV, and combine these results with our previous search for the tau decays of the light Higgs in radiative Y(3S) decays, setting limits on the coupling of A(0) to the b (b) over bar quarks in the range 0.09-1.9. Our measurements improve the constraints on the parameters of th…

QuarkParticle physicsNuclear and High Energy PhysicsMesonElectron–positron annihilationScalar (mathematics)FOS: Physical sciencesQuarkoniumPhoton energy01 natural sciencesSupersymmetric modelStandard ModelHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsPhysicsHiggs bosons010308 nuclear & particles physicsPACS: 14.80.Da 12.60.Fr 12.60.Jv 13.20.GdHigh Energy Physics::PhenomenologyParticle physicsBABAR detectorExtensions of electroweak Higgs sectorQuarkoniumHEPExtensions of electroweak Higgs sector; Supersymmetric models; Decays of J/psi Upsilon and other quarkoniaSupersymmetric modelsDecays of J/psi Upsilon and other quarkoniaBosons de HiggsBaBarHiggs bosonLeptonic decaysFísica nuclearHigh Energy Physics::ExperimentFísica de partículesExperiments
researchProduct

Measurement of the lifetime of tau-lepton

1996

The tau lepton lifetime is measured with the L3 detector at LEP using the complete data taken at centre-of-mass energies around the Z pole resulting in tau_tau = 293.2 +/- 2.0 (stat) +/- 1.5 (syst) fs. The comparison of this result with the muon lifetime supports lepton universality of the weak charged current at the level of six per mille. Assuming lepton universality, the value of the strong coupling constant, alpha_s is found to be alpha_s(m_tau^2) = 0.319 +/- 0.015(exp.) +/- 0.014 (theory). The tau lepton lifetime is measured with the L3 detector at LEP using the complete data taken at centre-of-mass energies around the Z pole resulting in τ τ =293.2 ± 2.0 (stat) ± 1.5 (syst) fs . The c…

COLLISIONSNuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLOPAIR PRODUCTIONElectron–positron annihilationFOS: Physical sciencesElementary particleddc:500.201 natural sciences7. Clean energyResonance (particle physics)JET FRAGMENTATIONDECAYSHigh Energy Physics - ExperimentNuclear physicsParticle decayHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]SILICON MICROVERTEX DETECTORPRECISE MEASUREMENTLimit (mathematics)QCD ANALYSIS010306 general physicsL3 EXPERIMENTCoupling constantPhysicsMuonAnnihilationTEST BEAME+E-PHYSICS010308 nuclear & particles physicsALPHA(S)High Energy Physics::PhenomenologyDetectorPair productionSPECTRAL FUNCTIONSComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHigh Energy Physics::ExperimentParticle Physics - ExperimentLeptonNuclear and Particle Physics Proceedings
researchProduct

Flavour violation at the LHC: type-I versus type-II seesaw in minimal supergravity

2009

20 pages, 13 figures.-- ISI article identifier:000267789100003.-- ArXiv pre-print avaible at:http://arxiv.org/abs/0903.1408

Nuclear and High Energy PhysicsParticle physicsFOS: Physical sciences01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)Seesaw molecular geometry0103 physical sciencesNeutrino Physics010306 general physicsNeutrino oscillationPhysicsLarge Hadron Collider010308 nuclear & particles physicsSupergravityMass generationHigh Energy Physics::PhenomenologyFísicaRare decaysHigh Energy Physics - PhenomenologySeesaw mechanismHigh Energy Physics::ExperimentBeyond standard modelNeutrinoLeptonSupersymmetric standard model
researchProduct

First candidates for γ vibrational bands built on the [505]11/2⁻ neutron orbital in odd-A Dy isotopes

2020

Rotational structures have been measured using the Jurogam II and GAMMASPHERE arrays at low spin following the 155Gd(α,2n)157Dy and 148Nd(12C,5n)155Dy reactions at 25 and 65 MeV, respectively. We report high-K bands, which are conjectured to be the first candidates of a Kπ=2+γ vibrational band, built on the [505]11/2− neutron orbital, in both odd-A155,157Dy isotopes. The coupling of the first excited K=0+ states or the so-called β vibrational bands at 661 and 676 keV in 154Dy and 156Dy to the [505]11/2− orbital, to produce a Kπ=11/2− band, was not observed in both 155Dy and 157Dy, respectively. The implication of these findings on the interpretation of the first excited 0+ states in the cor…

nuclear spin and parityshell modelcollective levelshiukkasfysiikkaydinfysiikkanuclear structure and decaysnuclear fusionnuclear reactions
researchProduct