Search results for "Delta"

showing 10 items of 471 documents

CCDC 709727: Experimental Crystal Structure Determination

2009

Related Article: I.S.Jahro, D.Onggo, Ismunandar, S.I.Rahayu, M.C.Munoz, A.B.Gaspar, M.Seredyuk, P.Gutlich, J.A.Real|2008|Inorg.Chim.Acta|361|4047|doi:10.1016/j.ica.2008.03.122

Space GroupCrystallographyclambdacdelta-tris(2-(2-Pyridyl)quinoline)-iron(ii) bis(tetrafluoroborate) ethanol solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Use of functionals in linearization and composite estimation with application to two-sample survey data

2009

An important problem associated with two-sample surveys is the estimation of nonlinear functions of finite population totals such as ratios, correlation coefficients or measures of income inequality. Computation and estimation of the variance of such complex statistics are made more difficult by the existence of overlapping units. In one-sample surveys, the linearization method based on the influence function approach is a powerful tool for variance estimation. We introduce a two-sample linearization technique that can be viewed as a generalization of the one-sample influence function approach. Our technique is based on expressing the parameters of interest as multivariate functionals of fi…

Statistics and ProbabilityAnalysis of covarianceeducation.field_of_studyOptimal estimationApplied MathematicsGeneral MathematicsPopulationEstimatorVariance (accounting)Agricultural and Biological Sciences (miscellaneous)One-way analysis of varianceDelta methodLinearizationStatisticsApplied mathematicsStatistics Probability and UncertaintyGeneral Agricultural and Biological ScienceseducationB- ECONOMIE ET FINANCEMathematicsBiometrika
researchProduct

The asymptotic covariance matrix of the Oja median

2003

The Oja median, based on a sample of multivariate data, is an affine equivariant estimate of the centre of the distribution. It reduces to the sample median in one dimension and has several nice robustness and efficiency properties. We develop different representations of its asymptotic variance and discuss ways to estimate this quantity. We consider symmetric multivariate models and also the more narrow elliptical models. A small simulation study is included to compare finite sample results to the asymptotic formulas.

Statistics and ProbabilityCombinatoricsDelta methodMultivariate statisticsMatrix (mathematics)Multivariate analysis of varianceDimension (vector space)Matrix t-distributionApplied mathematicsEquivariant mapAffine transformationStatistics Probability and UncertaintyMathematicsStatistics & Probability Letters
researchProduct

A Distribution-Free Two-Sample Equivalence Test Allowing for Tied Observations

1999

A new testing procedure is derived which enables to assess the equivalence of two arbitrary noncontinuous distribution functions from which unrelated samples are taken as the data to be analyzed. The equivalence region is defined to consist of all pairs (F, G) of distribution functions such that for independent X ∼F, Y ∼G the conditional probability of {X > Y} given {X ¬= Y} lies in some short interval around 1/2. The test rejects the null hypothesis of nonequivalence if and only if the standardized distance between the U-statistics estimator of P|X > Y | X ¬= Y] and the center of the equivalence interval (1/2 - e 1 , 1/2 + e 2 ) does not exceed a critical upper bound which has to be comput…

Statistics and ProbabilityConditional probabilityEstimatorGeneral MedicineUpper and lower boundsCombinatoricsDelta methodDistribution functionSampling distributionStatisticsStatistics Probability and UncertaintyEquivalence (measure theory)MathematicsNoncentrality parameterBiometrical Journal
researchProduct

Properties of Design-Based Functional Principal Components Analysis.

2010

This work aims at performing Functional Principal Components Analysis (FPCA) with Horvitz-Thompson estimators when the observations are curves collected with survey sampling techniques. One important motivation for this study is that FPCA is a dimension reduction tool which is the first step to develop model assisted approaches that can take auxiliary information into account. FPCA relies on the estimation of the eigenelements of the covariance operator which can be seen as nonlinear functionals. Adapting to our functional context the linearization technique based on the influence function developed by Deville (1999), we prove that these estimators are asymptotically design unbiased and con…

Statistics and ProbabilityContext (language use)Mathematics - Statistics TheoryStatistics Theory (math.ST)Perturbation theory01 natural sciencesVariance estimationHorvitz–Thompson estimatorSurvey sampling010104 statistics & probabilityLinearization[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]0502 economics and businessStatisticsConsistent estimatorFOS: Mathematicsvon Mises expansionApplied mathematicsHorvitz-Thompson estimator[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]0101 mathematicsComputingMilieux_MISCELLANEOUS050205 econometrics MathematicsEigenfunctionsInfluence functionApplied Mathematics05 social sciencesMathematical statisticsEstimator[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]Covariance operatorCovariance16. Peace & justice[ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH]Delta methodModel-assisted estimationStatistics Probability and Uncertainty
researchProduct

Variance Estimation and Asymptotic Confidence Bands for the Mean Estimator of Sampled Functional Data with High Entropy Unequal Probability Sampling …

2013

For fixed size sampling designs with high entropy it is well known that the variance of the Horvitz-Thompson estimator can be approximated by the Hajek formula. The interest of this asymptotic variance approximation is that it only involves the first order inclusion probabilities of the statistical units. We extend this variance formula when the variable under study is functional and we prove, under general conditions on the regularity of the individual trajectories and the sampling design, that it asymptotically provides a uniformly consistent estimator of the variance function of the Horvitz-Thompson estimator of the mean function. Rates of convergence to the true variance function are gi…

Statistics and ProbabilityDelta methodEfficient estimatorMinimum-variance unbiased estimatorBias of an estimatorMean squared errorConsistent estimatorStatisticsVariance reductionStatistics Probability and UncertaintyMathematicsVariance functionScandinavian Journal of Statistics
researchProduct

Establishing some order amongst exact approximations of MCMCs

2016

Exact approximations of Markov chain Monte Carlo (MCMC) algorithms are a general emerging class of sampling algorithms. One of the main ideas behind exact approximations consists of replacing intractable quantities required to run standard MCMC algorithms, such as the target probability density in a Metropolis-Hastings algorithm, with estimators. Perhaps surprisingly, such approximations lead to powerful algorithms which are exact in the sense that they are guaranteed to have correct limiting distributions. In this paper we discover a general framework which allows one to compare, or order, performance measures of two implementations of such algorithms. In particular, we establish an order …

Statistics and ProbabilityFOS: Computer and information sciences65C05Mathematical optimizationMonotonic function01 natural sciencesStatistics - ComputationPseudo-marginal algorithm010104 statistics & probabilitysymbols.namesake60J05martingale couplingalgoritmitFOS: MathematicsApplied mathematics60J220101 mathematicsComputation (stat.CO)Mathematics65C40 (Primary) 60J05 65C05 (Secondary)Martingale couplingMarkov chainmatematiikkapseudo-marginal algorithm010102 general mathematicsProbability (math.PR)EstimatorMarkov chain Monte Carloconvex orderDelta methodMarkov chain Monte CarloOrder conditionsymbolsStatistics Probability and UncertaintyAsymptotic variance60E15Martingale (probability theory)Convex orderMathematics - ProbabilityGibbs sampling
researchProduct

Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance

2017

We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent IS weighting, and a standard MCMC estimator, based on an exact reversible chain. Essentially, we relax the criterion of the Peskun type covariance ordering by considering two different invariant probabilities, and obtain, in place of a strict ordering of asymptotic variances, a bound of the asymptotic variance of IS by that of the direct MCMC. Simple examples show that IS can have arbitrarily better or worse asymptotic variance than Metropolis-Hastings and delayed-acceptanc…

Statistics and ProbabilityFOS: Computer and information sciencesdelayed-acceptanceMarkovin ketjut01 natural sciencesStatistics - Computationasymptotic variance010104 statistics & probabilitysymbols.namesake60J22 65C05unbiased estimatorFOS: MathematicsApplied mathematics0101 mathematicsComputation (stat.CO)stokastiset prosessitestimointiMathematicsnumeeriset menetelmätpseudo-marginal algorithmApplied Mathematics010102 general mathematicsProbability (math.PR)EstimatorMarkov chain Monte CarloCovarianceInfimum and supremumWeightingMarkov chain Monte CarloMonte Carlo -menetelmätDelta methodimportance samplingModeling and SimulationBounded functionsymbolsImportance samplingMathematics - Probability
researchProduct

Design-based estimation for geometric quantiles with application to outlier detection

2010

Geometric quantiles are investigated using data collected from a complex survey. Geometric quantiles are an extension of univariate quantiles in a multivariate set-up that uses the geometry of multivariate data clouds. A very important application of geometric quantiles is the detection of outliers in multivariate data by means of quantile contours. A design-based estimator of geometric quantiles is constructed and used to compute quantile contours in order to detect outliers in both multivariate data and survey sampling set-ups. An algorithm for computing geometric quantile estimates is also developed. Under broad assumptions, the asymptotic variance of the quantile estimator is derived an…

Statistics and ProbabilityStatistics::TheoryTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESStatistics::ApplicationsComputingMethodologies_SIMULATIONANDMODELINGApplied MathematicsMathematicsofComputing_NUMERICALANALYSISUnivariateInformationSystems_DATABASEMANAGEMENTEstimatorStatistics::ComputationQuantile regressionHorvitz–Thompson estimatorComputational MathematicsDelta methodComputational Theory and MathematicsTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYOutlierConsistent estimatorStatisticsStatistics::MethodologyMathematicsQuantileComputational Statistics & Data Analysis
researchProduct

Efficient Estimation of Non-Linear Finite Population Parameters by Using Non-Parametrics

2013

Summary Currently, high precision estimation of non-linear parameters such as Gini indices, low income proportions or other measures of inequality is particularly crucial. We propose a general class of estimators for such parameters that take into account univariate auxiliary information assumed to be known for every unit in the population. Through a non-parametric model-assisted approach, we construct a unique system of survey weights that can be used to estimate any non-linear parameter that is associated with any study variable of the survey, using a plug-in principle. Based on a rigorous functional approach and a linearization principle, the asymptotic variance of the estimators propose…

Statistics and Probabilityeducation.field_of_studyPopulationUnivariateEstimatorVariance (accounting)Delta methodLinearizationStatisticsEconometricsStatistics Probability and UncertaintyeducationSmoothingParametric statisticsMathematicsJournal of the Royal Statistical Society Series B: Statistical Methodology
researchProduct