Search results for "Delta"
showing 10 items of 471 documents
CCDC 709727: Experimental Crystal Structure Determination
2009
Related Article: I.S.Jahro, D.Onggo, Ismunandar, S.I.Rahayu, M.C.Munoz, A.B.Gaspar, M.Seredyuk, P.Gutlich, J.A.Real|2008|Inorg.Chim.Acta|361|4047|doi:10.1016/j.ica.2008.03.122
Use of functionals in linearization and composite estimation with application to two-sample survey data
2009
An important problem associated with two-sample surveys is the estimation of nonlinear functions of finite population totals such as ratios, correlation coefficients or measures of income inequality. Computation and estimation of the variance of such complex statistics are made more difficult by the existence of overlapping units. In one-sample surveys, the linearization method based on the influence function approach is a powerful tool for variance estimation. We introduce a two-sample linearization technique that can be viewed as a generalization of the one-sample influence function approach. Our technique is based on expressing the parameters of interest as multivariate functionals of fi…
The asymptotic covariance matrix of the Oja median
2003
The Oja median, based on a sample of multivariate data, is an affine equivariant estimate of the centre of the distribution. It reduces to the sample median in one dimension and has several nice robustness and efficiency properties. We develop different representations of its asymptotic variance and discuss ways to estimate this quantity. We consider symmetric multivariate models and also the more narrow elliptical models. A small simulation study is included to compare finite sample results to the asymptotic formulas.
A Distribution-Free Two-Sample Equivalence Test Allowing for Tied Observations
1999
A new testing procedure is derived which enables to assess the equivalence of two arbitrary noncontinuous distribution functions from which unrelated samples are taken as the data to be analyzed. The equivalence region is defined to consist of all pairs (F, G) of distribution functions such that for independent X ∼F, Y ∼G the conditional probability of {X > Y} given {X ¬= Y} lies in some short interval around 1/2. The test rejects the null hypothesis of nonequivalence if and only if the standardized distance between the U-statistics estimator of P|X > Y | X ¬= Y] and the center of the equivalence interval (1/2 - e 1 , 1/2 + e 2 ) does not exceed a critical upper bound which has to be comput…
Properties of Design-Based Functional Principal Components Analysis.
2010
This work aims at performing Functional Principal Components Analysis (FPCA) with Horvitz-Thompson estimators when the observations are curves collected with survey sampling techniques. One important motivation for this study is that FPCA is a dimension reduction tool which is the first step to develop model assisted approaches that can take auxiliary information into account. FPCA relies on the estimation of the eigenelements of the covariance operator which can be seen as nonlinear functionals. Adapting to our functional context the linearization technique based on the influence function developed by Deville (1999), we prove that these estimators are asymptotically design unbiased and con…
Variance Estimation and Asymptotic Confidence Bands for the Mean Estimator of Sampled Functional Data with High Entropy Unequal Probability Sampling …
2013
For fixed size sampling designs with high entropy it is well known that the variance of the Horvitz-Thompson estimator can be approximated by the Hajek formula. The interest of this asymptotic variance approximation is that it only involves the first order inclusion probabilities of the statistical units. We extend this variance formula when the variable under study is functional and we prove, under general conditions on the regularity of the individual trajectories and the sampling design, that it asymptotically provides a uniformly consistent estimator of the variance function of the Horvitz-Thompson estimator of the mean function. Rates of convergence to the true variance function are gi…
Establishing some order amongst exact approximations of MCMCs
2016
Exact approximations of Markov chain Monte Carlo (MCMC) algorithms are a general emerging class of sampling algorithms. One of the main ideas behind exact approximations consists of replacing intractable quantities required to run standard MCMC algorithms, such as the target probability density in a Metropolis-Hastings algorithm, with estimators. Perhaps surprisingly, such approximations lead to powerful algorithms which are exact in the sense that they are guaranteed to have correct limiting distributions. In this paper we discover a general framework which allows one to compare, or order, performance measures of two implementations of such algorithms. In particular, we establish an order …
Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance
2017
We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent IS weighting, and a standard MCMC estimator, based on an exact reversible chain. Essentially, we relax the criterion of the Peskun type covariance ordering by considering two different invariant probabilities, and obtain, in place of a strict ordering of asymptotic variances, a bound of the asymptotic variance of IS by that of the direct MCMC. Simple examples show that IS can have arbitrarily better or worse asymptotic variance than Metropolis-Hastings and delayed-acceptanc…
Design-based estimation for geometric quantiles with application to outlier detection
2010
Geometric quantiles are investigated using data collected from a complex survey. Geometric quantiles are an extension of univariate quantiles in a multivariate set-up that uses the geometry of multivariate data clouds. A very important application of geometric quantiles is the detection of outliers in multivariate data by means of quantile contours. A design-based estimator of geometric quantiles is constructed and used to compute quantile contours in order to detect outliers in both multivariate data and survey sampling set-ups. An algorithm for computing geometric quantile estimates is also developed. Under broad assumptions, the asymptotic variance of the quantile estimator is derived an…
Efficient Estimation of Non-Linear Finite Population Parameters by Using Non-Parametrics
2013
Summary Currently, high precision estimation of non-linear parameters such as Gini indices, low income proportions or other measures of inequality is particularly crucial. We propose a general class of estimators for such parameters that take into account univariate auxiliary information assumed to be known for every unit in the population. Through a non-parametric model-assisted approach, we construct a unique system of survey weights that can be used to estimate any non-linear parameter that is associated with any study variable of the survey, using a plug-in principle. Based on a rigorous functional approach and a linearization principle, the asymptotic variance of the estimators propose…