Search results for "Density Functional Theory."
showing 10 items of 935 documents
Hexacarbonyls of Mo, W, and Sg: Metal–CO Bonding Revisited
2017
Calculations of the first bond dissociation energies (FBDEs) and other molecular properties of M(CO)6, where M = Mo, W, and Sg, have been performed using a variety of nonrelativistic and relativistic methods, such as ZORA-DFT, X2c+AMFI-CCSD(T), and Dirac–Coulomb density functional theory. The aim of the study is to assist experiments on the measurements of the FBDE of Sg(CO)6. We have found that, different from the results published earlier, the metal–CO bond in Sg(CO)6 should be weaker than that in W(CO)6. A comparison of the relativistic and nonrelativistic FBDE values, as well as molecular orbital and vibrational frequency analyses within both the nonrelativistic and relativistic approac…
Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble …
2015
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles …
Calculation of electronic g-tensors using coupled cluster theory.
2009
A scheme for the calculation of the electronic g-tensor at the coupled cluster (CC) level is presented. The reported implementation employs an effective one-electron spin-orbit operator, allows the inclusion of arbitrary excitations in the cluster operator, and offers various options concerning the treatment of orbital relaxation and choice of reference determinants. In addition, the use of gauge-including atomic orbitals (GIAOs) is possible to overcome the gauge origin problem. Benchmark calculations for the NH ((3)Sigma(-)) radical reveal the importance of electron correlation effects for the accurate prediction of the g-shift as well as the slow basis set convergence of such calculations…
Carbonyl compounds of Tc, Re, and Bh: Electronic structure, bonding, and volatility.
2018
Calculations of molecular properties of M(CO)5 and MH(CO)5, where M = Tc, Re, and Bh, and of the products of their decomposition, M(CO)4 and MH(CO)4, were performed using density functional theory and coupled-cluster methods implemented in the relativistic program suits such as ADF, DIRAC, and ReSpect. The calculated first M—CO bond dissociation energies (FBDEs) of Bh(CO)5 and BhH(CO)5 turned out to be significantly weaker than those of the corresponding Re homologs. The reason for that is the relativistic destabilization and expansion of the 6d AOs, responsible for weaker σ-forth and π-back donations in the Bh compounds. The relativistic FBDEs of M(CO)5 have, therefore, a Λ-shape behavior …
The Taming of Redox‐Labile Phosphidotitanocene Cations
2019
International audience; Tame d0 phosphidotitanocene cations stabilized with a pendant tertiary phosphane arm are reported. These compounds were obtained by one-electron oxidation of d1 precursors with [Cp2Fe][BPh4]. The electronic structure of these compounds was studied experimentally (EPR, UV/Vis, and NMR spectroscopy, X-ray diffraction analysis) and through DFT calculations. The theoretical analysis of the bonding situation by using the electron localization function (ELF) shows the presence of π-interactions between the phosphido ligand and Ti in the d0 complexes, whereas dπ–pπ repulsion prevents such interactions in the d1 complexes. In addition, CH–π interactions were observed in seve…
Towards Atomically Precise Supported Catalysts from Monolayer‐Protected Clusters: The Critical Role of the Support
2020
Abstract Controlling the size and uniformity of metal clusters with atomic precision is essential for fine‐tuning their catalytic properties, however for clusters deposited on supports, such control is challenging. Here, by combining X‐ray absorption spectroscopy and density functional theory calculations, it is shown that supports play a crucial role in the evolution of monolayer‐protected clusters into catalysts. Based on the acidic nature of the support, cluster‐support interactions lead either to fragmentation of the cluster into isolated Au–ligand species or ligand‐free metallic Au0 clusters. On Lewis acidic supports that bind metals strongly, the latter transformation occurs while pre…
Gold/Isophorone Interaction Driven by Keto/Enol Tautomerization
2016
The binding behavior of isophorone (C9H14O) to Au adatoms and clusters deposited on MgO/Ag(001) thin films is investigated by scanning tunneling microscopy (STM) and density functional theory (DFT). The STM data reveal the formation of various metal/organic complexes, ranging from Au1/isophorone pairs to larger Au aggregates with molecules bound to their perimeter. DFT calculations find the energetically preferred keto-isophorone to be unreactive toward gold, while the enol-tautomer readily binds to Au monomers and clusters. The interaction is governed by electrostatic forces between the hydroxyl group of the enol and negative excess charges residing on the ad-gold. The activation barrier b…
The first example of cofacial bis(dipyrrins)
2016
International audience; Two series of cofacial bis(dipyrrins) were prepared and their photophysical properties as well as their bimolecular fluorescence quenching with C-60 were investigated. DFT and TDDFT computations were also performed as a modeling tool to address the nature of the fluorescence state and the possible inter-chromophore interactions. Clearly, there is no evidence for such interactions and the bimolecular quenching of fluorescence, in comparison with mono-dipyrrins, indicates that C-60-bis(dipyrrin) contacts occur from the outside of the "mouth" of the cofacial structure.
Computational study of the spin-forbidden H 2 oxidative addition to 16-electron Fe(0) complexes
2003
International audience; The spin-forbidden oxidative addition of H2 to Fe(CO)4, Fe(PH3)4, Fe(dpe)2 and Fe(dmpe)2 [dpe = H2PCH2CH2PH2, dmpe = (CH3)2PCH2CH2P(CH3)2] has been investigated by density functional theory using a modified B3PW91 functional. All 16-electron fragments are found to adopt a spin triplet ground state. The H2 addition involves a spin crossover in the reagents region of configurational space, at a significantly higher energy relative to the triplet dissociation asymptote and, for the case of Fe(CO)4·H2, even higher than the singlet dissociation asymptote. After crossing to the singlet surface, the addition proceeds directly to the classical cis-dihydride product. Only for…
Novel Stannatrane N(CH2CMe2O)2(CMe2CH2O)SnO-t-Bu and Related Oligonuclear Tin(IV) Oxoclusters. Two Isomers in One Crystal
2016
The syntheses of the alkanolamine N(CH2CMe2OH)2(CMe2CH2OH) (1), of the stannatrane N(CH2CMe2O)2(CMe2CH2O)SnO-t-Bu (2), and of the trinuclear tin oxocluster 3 consisting of the two isomers [(μ3-O)(O-t-Bu){Sn(OCH2CMe2)(OCMe2CH2)2N}3] (3a) and [(μ3-O)(μ3-O-t-Bu){Sn(OCH2CMe2)(OCMe2CH2)2N}3] (3b) as well as the isolation of a few crystals of the hexanuclear tin oxocluster [LSnOSn(OH)3LSnOH]2 [L = N(CH2CMe2O)2(CMe2CH2O)] (4) are reported. The compounds were characterized by 1H, 13C, 15N, and 119Sn (1–3) nuclear magnetic resonance and infrared spectroscopy, electrospray ionization mass spectrometry, and single-crystal X-ray diffraction analysis (1–4). A graph set analysis was performed for compoun…