Search results for "Density matrix"
showing 10 items of 106 documents
Generation and Coherent Control of Pulsed Quantum Frequency Combs
2018
We present a method for the generation and coherent manipulation of pulsed quantum frequency combs. Until now, methods of preparing high-dimensional states on-chip in a practical way have remained elusive due to the increasing complexity of the quantum circuitry needed to prepare and process such states. Here, we outline how high-dimensional, frequency-bin entangled, two-photon states can be generated at a stable, high generation rate by using a nested-cavity, actively mode-locked excitation of a nonlinear micro-cavity. This technique is used to produce pulsed quantum frequency combs. Moreover, we present how the quantum states can be coherently manipulated using standard telecommunications…
Measurement of spin-orbital angular momentum interactions in relativistic heavy-ion collisions
2020
The first evidence of spin alignment of vector mesons ($K^{*0}$ and $\phi$) in heavy-ion collisions at the Large Hadron Collider (LHC) is reported. The spin density matrix element $\rho_{00}$ is measured at midrapidity ($|y| <$ 0.5) in Pb-Pb collisions at a center-of-mass energy ($\sqrt{s_{\rm NN}}$) of 2.76 TeV with the ALICE detector. $\rho_{00}$ values are found to be less than 1/3 (1/3 implies no spin alignment) at low transverse momentum ($p_{\rm T} <$ 2 GeV/$c$) for $K^{*0}$ and $\phi$ at a level of 3$\sigma$ and 2$\sigma$, respectively. No significant spin alignment is observed for the $K^0_S$ meson (spin = 0) in Pb-Pb collisions and for the vector mesons in $pp$ collisions. The meas…
Long-range interactions and the sign of natural amplitudes in two-electron systems
2013
In singlet two-electron systems the natural occupation numbers of the one-particle reduced density matrix are given as squares of the natural amplitudes which are defined as the expansion coefficients of the two-electron wave function in a natural orbital basis. In this work we relate the sign of the natural amplitudes to the nature of the two-body interaction. We show that long-range Coulomb-type interactions are responsible for the appearance of positive amplitudes and give both analytical and numerical examples that illustrate how the long-distance structure of the wave function affects these amplitudes. We further demonstrate that the amplitudes show an avoided crossing behavior as func…
Meaning and magnitude of the reduced density matrix cumulants
2012
Abstract Within the framework of a generalized normal ordering (GNO), invented by Mukherjee [1] , the reduced density matrix cumulants of the (multiconfigurational) reference wave function play a central role, as they arise directly from the contraction rules. The extended Wick theorem allows contractions of an arbitrary number of active annihilators and creators through a cumulant of corresponding rank. Because the cumulant rank truncates naturally only at the number of active spin orbitals, practical applications of the GNO concept seem to rely on a fast convergence of the cumulant series, allowing one to neglect cumulants with high rank. By computing cumulant norms for selected systems (…
Unconventional phases of attractive Fermi gases in synthetic Hall ribbons
2017
An innovative way to produce quantum Hall ribbons in a cold atomic system is to use M hyperfine states of atoms in a one-dimensional optical lattice to mimic an additional "synthetic dimension." A notable aspect here is that the SU(M) symmetric interaction between atoms manifests as "infinite ranged" along the synthetic dimension. We study the many-body physics of fermions with SU(M) symmetric attractive interactions in this system using a combination of analytical field theoretic and numerical density-matrix renormalization-group methods. We uncover the rich ground-state phase diagram of the system, including unconventional phases such as squished baryon fluids, shedding light on many-body…
Probing the bond order wave phase transitions of the ionic Hubbard model by superlattice modulation spectroscopy
2017
An exotic phase, the bond order wave, characterized by the spontaneous dimerization of the hopping, has been predicted to exist sandwiched between the band and Mott insulators in systems described by the ionic Hubbard model. Despite growing theoretical evidences, this phase still evades experimental detection. Given the recent realization of the ionic Hubbard model in ultracold atomic gases, we propose here to detect the bond order wave using superlattice modulation spectroscopy. We demonstrate, with the help of time-dependent density-matrix renormalization group and bosonization, that this spectroscopic approach reveals characteristics of both the Ising and Kosterlitz-Thouless transitions …
Accessing finite momentum excitations of the one-dimensional Bose-Hubbard model using superlattice modulation spectroscopy
2018
We investigate the response to superlattice modulation of a bosonic quantum gas confined to arrays of tubes emulating the one-dimensional Bose-Hubbard model. We demonstrate, using both time-dependent density matrix renormalization group and linear response theory, that such a superlattice modulation gives access to the excitation spectrum of the Bose-Hubbard model at finite momenta. Deep in the Mott-insulator, the response is characterized by a narrow energy absorption peak at a frequency approximately corresponding to the onsite interaction strength between bosons. This spectroscopic technique thus allows for an accurate measurement of the effective value of the interaction strength. On th…
Quantum criticality on a chiral ladder: An SU(2) infinite density matrix renormalization group study
2019
In this paper we study the ground-state properties of a ladder Hamiltonian with chiral $\text{SU}(2)$-invariant spin interactions, a possible first step toward the construction of truly two-dimensional nontrivial systems with chiral properties starting from quasi-one-dimensional ones. Our analysis uses a recent implementation by us of $\text{SU}(2)$ symmetry in tensor network algorithms, specifically for infinite density matrix renormalization group. After a preliminary analysis with Kadanoff coarse graining and exact diagonalization for a small-size system, we discuss its bosonization and recap the continuum limit of the model to show that it corresponds to a conformal field theory, in agr…
Parallelization strategies for density matrix renormalization group algorithms on shared-memory systems
2003
Shared-memory parallelization (SMP) strategies for density matrix renormalization group (DMRG) algorithms enable the treatment of complex systems in solid state physics. We present two different approaches by which parallelization of the standard DMRG algorithm can be accomplished in an efficient way. The methods are illustrated with DMRG calculations of the two-dimensional Hubbard model and the one-dimensional Holstein-Hubbard model on contemporary SMP architectures. The parallelized code shows good scalability up to at least eight processors and allows us to solve problems which exceed the capability of sequential DMRG calculations.
Fulde-Ferrell-Larkin-Ovchinnikov pairing in one-dimensional optical lattices
2008
Spin-polarized attractive Fermi gases in one-dimensional (1D) optical lattices are expected to be remarkably good candidates for the observation of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase. We model these systems with an attractive Hubbard model with population imbalance. By means of the density-matrix renormalization-group method, we compute the pairing correlations as well as the static spin and charge structure factors in the whole range from weak to strong coupling. We demonstrate that pairing correlations exhibit quasi-long-range order and oscillations at the wave number expected from the FFLO theory. However, we also show by numerically computing the mixed spin-charge static …