Search results for "Deterministic algorithm"

showing 10 items of 27 documents

Nondeterministic Moore Automata and Brzozowski’s Algorithm

2011

Moore automata represent a model that has many applications. In this paper we define a notion of coherent nondeterministic Moore automaton (NMA) and show that such a model has the same computational power of the classical deterministic Moore automaton. We consider also the problem of constructing the minimal deterministic Moore automaton equivalent to a given NMA. In this paper we propose an algorithm that is a variant of Brzozowski's algorithm in the sense that it is essentially structured as reverse operation and subset construction performed twice.

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESSettore INF/01 - InformaticaPowerset constructionBüchi automatonNonlinear Sciences::Cellular Automata and Lattice GasesNondeterministic algorithmTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDeterministic finite automatonDFA minimizationDeterministic automatonTwo-way deterministic finite automatonMoore automata minimization Brzozowski'algorithmNondeterministic finite automatonAlgorithmComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

The Descriptive Complexity Approach to LOGCFL

1999

Building upon the known generalized-quantifier-based firstorder characterization of LOGCFL, we lay the groundwork for a deeper investigation. Specifically, we examine subclasses of LOGCFL arising from varying the arity and nesting of groupoidal quantifiers. Our work extends the elaborate theory relating monoidal quantifiers to NC1 and its subclasses. In the absence of the BIT predicate, we resolve the main issues: we show in particular that no single outermost unary groupoidal quantifier with FO can capture all the context-free languages, and we obtain the surprising result that a variant of Greibach's "hardest contextfree language" is LOGCFL-complete under quantifier-free BIT-free interpre…

Discrete mathematicsUnary operationComputer science0102 computer and information sciences02 engineering and technologyComputer Science::Computational ComplexityArityDescriptive complexity theory01 natural sciencesNondeterministic algorithm010201 computation theory & mathematicsDeterministic automatonBIT predicate0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingNondeterministic finite automatonLOGCFL
researchProduct

Visibly pushdown modular games,

2014

Games on recursive game graphs can be used to reason about the control flow of sequential programs with recursion. In games over recursive game graphs, the most natural notion of strategy is the modular strategy, i.e., a strategy that is local to a module and is oblivious to previous module invocations, and thus does not depend on the context of invocation. In this work, we study for the first time modular strategies with respect to winning conditions that can be expressed by a pushdown automaton. We show that such games are undecidable in general, and become decidable for visibly pushdown automata specifications. Our solution relies on a reduction to modular games with finite-state automat…

FOS: Computer and information sciencesComputer Science::Computer Science and Game TheoryComputer Science - Logic in Computer ScienceTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESTheoretical computer scienceFormal Languages and Automata Theory (cs.FL)Computer scienceComputer Science - Formal Languages and Automata Theory0102 computer and information sciences02 engineering and technologyComputational Complexity (cs.CC)Pushdown01 natural scienceslcsh:QA75.5-76.95Theoretical Computer ScienceComputer Science - Computer Science and Game TheoryComputer Science::Logic in Computer Science0202 electrical engineering electronic engineering information engineeringTemporal logicRecursionbusiness.industrylcsh:MathematicsGames; Modular; Pushdown; Theoretical Computer Science; Information Systems; Computer Science Applications; Computational Theory and MathematicsPushdown automatonModular designDecision problemlcsh:QA1-939Logic in Computer Science (cs.LO)Computer Science ApplicationsUndecidable problemDecidabilityNondeterministic algorithmComputer Science - Computational ComplexityModularTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputational Theory and Mathematics010201 computation theory & mathematics020201 artificial intelligence & image processinglcsh:Electronic computers. Computer scienceGamesbusinessComputer Science::Formal Languages and Automata TheoryComputer Science and Game Theory (cs.GT)Information SystemsInformation and Computation
researchProduct

The Descriptive Complexity Approach to LOGCFL

1998

Building upon the known generalized-quantifier-based first-order characterization of LOGCFL, we lay the groundwork for a deeper investigation. Specifically, we examine subclasses of LOGCFL arising from varying the arity and nesting of groupoidal quantifiers. Our work extends the elaborate theory relating monoidal quantifiers to NC1 and its subclasses. In the absence of the BIT predicate, we resolve the main issues: we show in particular that no single outermost unary groupoidal quantifier with FO can capture all the context-free languages, and we obtain the surprising result that a variant of Greibach's ``hardest context-free language'' is LOGCFL-complete under quantifier-free BIT-free proj…

FOS: Computer and information sciencesFinite model theoryUnary operationComputer Networks and Communicationsautomata and formal languages0102 computer and information sciencesComputational Complexity (cs.CC)Computer Science::Computational ComplexityArityDescriptive complexity theory01 natural sciencesTheoretical Computer ScienceComputer Science::Logic in Computer ScienceNondeterministic finite automaton0101 mathematicsLOGCFLMathematicsDiscrete mathematicscomputational complexityApplied Mathematics010102 general mathematicsdescriptive complexityNondeterministic algorithmComputer Science - Computational Complexityfinite model theoryQuantifier (logic)Computational Theory and Mathematics010201 computation theory & mathematicsF.1.3Journal of Computer and System Sciences
researchProduct

Classical automata on promise problems

2015

Promise problems were mainly studied in quantum automata theory. Here we focus on state complexity of classical automata for promise problems. First, it was known that there is a family of unary promise problems solvable by quantum automata by using a single qubit, but the number of states required by corresponding one-way deterministic automata cannot be bounded by a constant. For this family, we show that even two-way nondeterminism does not help to save a single state. By comparing this with the corresponding state complexity of alternating machines, we then get a tight exponential gap between two-way nondeterministic and one-way alternating automata solving unary promise problems. Secon…

FOS: Computer and information sciencesNested wordTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESUnary operationGeneral Computer ScienceFormal Languages and Automata Theory (cs.FL)nondeterministic automataComputer Science - Formal Languages and Automata Theoryω-automatonComputational Complexity (cs.CC)Theoretical Computer ScienceContinuous spatial automatonQuantum finite automataDiscrete Mathematics and Combinatoricsalternating automatapromise problemsMathematicsprobabilistic automataNonlinear Sciences::Cellular Automata and Lattice GasesMobile automatonNondeterministic algorithmAlgebra[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]Computer Science - Computational ComplexityTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESAutomata theorydescriptional complexityComputer Science::Formal Languages and Automata Theory
researchProduct

RIGA at SemEval-2016 Task 8: Impact of Smatch Extensions and Character-Level Neural Translation on AMR Parsing Accuracy

2016

Two extensions to the AMR smatch scoring script are presented. The first extension com-bines the smatch scoring script with the C6.0 rule-based classifier to produce a human-readable report on the error patterns frequency observed in the scored AMR graphs. This first extension results in 4% gain over the state-of-art CAMR baseline parser by adding to it a manually crafted wrapper fixing the identified CAMR parser errors. The second extension combines a per-sentence smatch with an en-semble method for selecting the best AMR graph among the set of AMR graphs for the same sentence. This second modification au-tomatically yields further 0.4% gain when ap-plied to outputs of two nondeterministic…

FOS: Computer and information sciencesParsingComputer Science - Computation and LanguageComputer sciencebusiness.industry02 engineering and technologyExtension (predicate logic)computer.software_genreSemEvalSet (abstract data type)Nondeterministic algorithm020204 information systemsTest setClassifier (linguistics)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinesscomputerComputation and Language (cs.CL)Natural language processingSentence
researchProduct

Superlinear advantage for exact quantum algorithms

2012

A quantum algorithm is exact if, on any input data, it outputs the correct answer with certainty (probability 1). A key question is: how big is the advantage of exact quantum algorithms over their classical counterparts: deterministic algorithms. For total Boolean functions in the query model, the biggest known gap was just a factor of 2: PARITY of N inputs bits requires $N$ queries classically but can be computed with N/2 queries by an exact quantum algorithm. We present the first example of a Boolean function f(x_1, ..., x_N) for which exact quantum algorithms have superlinear advantage over the deterministic algorithms. Any deterministic algorithm that computes our function must use N qu…

FOS: Computer and information sciencesQuantum sortGeneral Computer ScienceDeterministic algorithmGeneral MathematicsFOS: Physical sciences0102 computer and information sciencesQuantum capacityComputational Complexity (cs.CC)01 natural sciences010305 fluids & plasmasCombinatorics0103 physical sciencesQuantum phase estimation algorithmQuantum informationBoolean function010306 general physicsComputer Science::DatabasesQuantum computerMathematicsDiscrete mathematicsQuantum PhysicsFunction (mathematics)Computer Science - Computational Complexity010201 computation theory & mathematicsQuantum Fourier transformNo-teleportation theoremQuantum algorithmQuantum Physics (quant-ph)Proceedings of the forty-fifth annual ACM symposium on Theory of Computing
researchProduct

The Many Faces of a Translation

2000

First-order translations have recently been characterized as the maps computed by aperiodic single-valued nondeterministic finite transducers (NFTs). It is shown here that this characterization lifts to "V-translations" and "V-single-valued-NFTs", where V is an arbitrary monoid pseudovariety. More strikingly, 2-way V-machines are introduced, and the following three models are shown exactly equivalent to Eilenberg's classical notion of a bimachine when V is a group variety or when V is the variety of aperiodic monoids: V-translations, V-single-valued-NFTs and 2-way V-transducers.

MonoidGroup (mathematics)0102 computer and information sciences02 engineering and technologyCharacterization (mathematics)Translation (geometry)01 natural sciencesCombinatoricsNondeterministic algorithmRegular language010201 computation theory & mathematicsAperiodic graph0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingVariety (universal algebra)Mathematics
researchProduct

Real-Time Vector Automata

2013

We study the computational power of real-time finite automata that have been augmented with a vector of dimension k, and programmed to multiply this vector at each step by an appropriately selected k×k matrix. Only one entry of the vector can be tested for equality to 1 at any time. Classes of languages recognized by deterministic, nondeterministic, and "blind" versions of these machines are studied and compared with each other, and the associated classes for multicounter automata, automata with multiplication, and generalized finite automata.

Nondeterministic algorithmDiscrete mathematicsMatrix (mathematics)TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESFinite-state machineDimension (vector space)Computer scienceMultiplicationNonlinear Sciences::Cellular Automata and Lattice GasesComputer Science::Formal Languages and Automata TheoryAutomatonPower (physics)
researchProduct

On Finite Satisfiability of Two-Variable First-Order Logic with Equivalence Relations

2009

We show that every finitely satisfiable two-variable first-order formula with two equivalence relations has a model of size at most triply exponential with respect to its length. Thus the finite satisfiability problem for two-variable logic over the class of structures with two equivalence relations is decidable in nondeterministic triply exponential time. We also show that replacing one of the equivalence relations in the considered class of structures by a relation which is only required to be transitive leads to undecidability. This sharpens the earlier result that two-variable logic is undecidable over the class of structures with two transitive relations.

Nondeterministic algorithmDiscrete mathematicsTransitive relationLogical equivalenceComputer Science::Logic in Computer SciencePreorderEquivalence relationSatisfiabilityDecidabilityMathematicsFirst-order logic2009 24th Annual IEEE Symposium on Logic In Computer Science
researchProduct