Search results for "Deterministic algorithm"
showing 10 items of 27 documents
Nondeterministic Moore Automata and Brzozowski’s Algorithm
2011
Moore automata represent a model that has many applications. In this paper we define a notion of coherent nondeterministic Moore automaton (NMA) and show that such a model has the same computational power of the classical deterministic Moore automaton. We consider also the problem of constructing the minimal deterministic Moore automaton equivalent to a given NMA. In this paper we propose an algorithm that is a variant of Brzozowski's algorithm in the sense that it is essentially structured as reverse operation and subset construction performed twice.
The Descriptive Complexity Approach to LOGCFL
1999
Building upon the known generalized-quantifier-based firstorder characterization of LOGCFL, we lay the groundwork for a deeper investigation. Specifically, we examine subclasses of LOGCFL arising from varying the arity and nesting of groupoidal quantifiers. Our work extends the elaborate theory relating monoidal quantifiers to NC1 and its subclasses. In the absence of the BIT predicate, we resolve the main issues: we show in particular that no single outermost unary groupoidal quantifier with FO can capture all the context-free languages, and we obtain the surprising result that a variant of Greibach's "hardest contextfree language" is LOGCFL-complete under quantifier-free BIT-free interpre…
Visibly pushdown modular games,
2014
Games on recursive game graphs can be used to reason about the control flow of sequential programs with recursion. In games over recursive game graphs, the most natural notion of strategy is the modular strategy, i.e., a strategy that is local to a module and is oblivious to previous module invocations, and thus does not depend on the context of invocation. In this work, we study for the first time modular strategies with respect to winning conditions that can be expressed by a pushdown automaton. We show that such games are undecidable in general, and become decidable for visibly pushdown automata specifications. Our solution relies on a reduction to modular games with finite-state automat…
The Descriptive Complexity Approach to LOGCFL
1998
Building upon the known generalized-quantifier-based first-order characterization of LOGCFL, we lay the groundwork for a deeper investigation. Specifically, we examine subclasses of LOGCFL arising from varying the arity and nesting of groupoidal quantifiers. Our work extends the elaborate theory relating monoidal quantifiers to NC1 and its subclasses. In the absence of the BIT predicate, we resolve the main issues: we show in particular that no single outermost unary groupoidal quantifier with FO can capture all the context-free languages, and we obtain the surprising result that a variant of Greibach's ``hardest context-free language'' is LOGCFL-complete under quantifier-free BIT-free proj…
Classical automata on promise problems
2015
Promise problems were mainly studied in quantum automata theory. Here we focus on state complexity of classical automata for promise problems. First, it was known that there is a family of unary promise problems solvable by quantum automata by using a single qubit, but the number of states required by corresponding one-way deterministic automata cannot be bounded by a constant. For this family, we show that even two-way nondeterminism does not help to save a single state. By comparing this with the corresponding state complexity of alternating machines, we then get a tight exponential gap between two-way nondeterministic and one-way alternating automata solving unary promise problems. Secon…
RIGA at SemEval-2016 Task 8: Impact of Smatch Extensions and Character-Level Neural Translation on AMR Parsing Accuracy
2016
Two extensions to the AMR smatch scoring script are presented. The first extension com-bines the smatch scoring script with the C6.0 rule-based classifier to produce a human-readable report on the error patterns frequency observed in the scored AMR graphs. This first extension results in 4% gain over the state-of-art CAMR baseline parser by adding to it a manually crafted wrapper fixing the identified CAMR parser errors. The second extension combines a per-sentence smatch with an en-semble method for selecting the best AMR graph among the set of AMR graphs for the same sentence. This second modification au-tomatically yields further 0.4% gain when ap-plied to outputs of two nondeterministic…
Superlinear advantage for exact quantum algorithms
2012
A quantum algorithm is exact if, on any input data, it outputs the correct answer with certainty (probability 1). A key question is: how big is the advantage of exact quantum algorithms over their classical counterparts: deterministic algorithms. For total Boolean functions in the query model, the biggest known gap was just a factor of 2: PARITY of N inputs bits requires $N$ queries classically but can be computed with N/2 queries by an exact quantum algorithm. We present the first example of a Boolean function f(x_1, ..., x_N) for which exact quantum algorithms have superlinear advantage over the deterministic algorithms. Any deterministic algorithm that computes our function must use N qu…
The Many Faces of a Translation
2000
First-order translations have recently been characterized as the maps computed by aperiodic single-valued nondeterministic finite transducers (NFTs). It is shown here that this characterization lifts to "V-translations" and "V-single-valued-NFTs", where V is an arbitrary monoid pseudovariety. More strikingly, 2-way V-machines are introduced, and the following three models are shown exactly equivalent to Eilenberg's classical notion of a bimachine when V is a group variety or when V is the variety of aperiodic monoids: V-translations, V-single-valued-NFTs and 2-way V-transducers.
Real-Time Vector Automata
2013
We study the computational power of real-time finite automata that have been augmented with a vector of dimension k, and programmed to multiply this vector at each step by an appropriately selected k×k matrix. Only one entry of the vector can be tested for equality to 1 at any time. Classes of languages recognized by deterministic, nondeterministic, and "blind" versions of these machines are studied and compared with each other, and the associated classes for multicounter automata, automata with multiplication, and generalized finite automata.
On Finite Satisfiability of Two-Variable First-Order Logic with Equivalence Relations
2009
We show that every finitely satisfiable two-variable first-order formula with two equivalence relations has a model of size at most triply exponential with respect to its length. Thus the finite satisfiability problem for two-variable logic over the class of structures with two equivalence relations is decidable in nondeterministic triply exponential time. We also show that replacing one of the equivalence relations in the considered class of structures by a relation which is only required to be transitive leads to undecidability. This sharpens the earlier result that two-variable logic is undecidable over the class of structures with two transitive relations.