Search results for "Diabatic"

showing 10 items of 303 documents

Optimized adiabatic passage with dephasing

2008

We study adiabatic population transfer with dephasing in two-level models driven by a chirped driving field. We show that the population transfer is maximized when the dynamics follows specific ellipses as trajectories in the parameter space. We determine the optimal parameters and estimate the losses in a closed form. These estimates show a similar robustness as for the standard lossless adiabatic processes with respect to variations of the parameters.

Lossless compressionPhysicsQuantum decoherenceField (physics)Robustness (computer science)DephasingQuantum mechanicsStatistical physicsParameter spaceAdiabatic processEllipseAtomic and Molecular Physics and OpticsPhysical Review A
researchProduct

Relativistic MHD simulations of extragalactic jets

2005

We have performed a comprehensive parameter study of the morphology and dynamics of axisymmetric, magnetized, relativistic jets by means of numerical simulations. The simulations have been performed with an upgraded version of the GENESIS code which is based on a second-order accurate finite volume method involving an approximate Riemann solver suitable for relativistic ideal magnetohydrodynamic flows, and a method of lines. Starting from pure hydrodynamic models we consider the effect of a magnetic field of increasing strength (up to β ≡ |b|2/2p ≈ 3.3 times the equipartition value) and different topology (purely toroidal or poloidal). We computed several series of models investigating the …

MHDAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICANose coneRelativitysymbols.namesakeMagnetohydrodynamicsAstrophysical jetJetsAdiabatic processEquipartition theoremMagnetohydrodynamics ; MHD ; numerical method ; Relativity ; Active galaxies ; JetsPhysicsnumerical methodAstronomy and Astrophysics:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Magnetic fieldComputational physicsLorentz factorClassical mechanicsSpace and Planetary SciencePoynting vectorsymbolsActive galaxiesMagnetohydrodynamicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

Grand canonical rate theory for electrochemical and electrocatalytic systems I: General formulation and proton-coupled electron transfer reactions

2020

A generally valid rate theory at fixed potentials is developed to treat electrochemical and electrocatalytic potential-dependent electron, proton, and proton-coupled electron reactions. Both classical and quantum reactions in adiabatic and non-adiabatic limits are treated. The applicability and new information obtained from the theory is demonstrated for the gold catalyzed acidic Volmer reaction.

Materials science010304 chemical physicsProtonRenewable Energy Sustainability and the EnvironmentElectrochemical kineticsElectron010402 general chemistryCondensed Matter PhysicsElectrocatalystElectrochemistry01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCatalysisElectron transferChemical physics0103 physical sciencesMaterials ChemistryElectrochemistryProton-coupled electron transferAdiabatic processNuclear ExperimentQuantum
researchProduct

Thermal Decomposition and Combustion of Microwave Pre-Treated Biomass Pellets

2021

The objective of the study was to investigate a more effective use of commercially available biomass pellets (wheat straw, wood, peat) using microwave pretreatment to improve heat production. Pellets were pretreated using the originally designed microwave torrefaction device. The effects of microwave (mw) pretreatment were quantified, providing measurements of the weight loss and elemental composition of pellets and estimating the effect of mw pretreatment on their porosity, surface area and calorific values at pretreatment temperatures of T = 448–553 K. Obtained results show that the highest structural variations and elemental composition during mw pretreatment were obtained for wheat stra…

Materials science0211 other engineering and technologiesPelletsBioengineering02 engineering and technology010501 environmental sciencesCombustionlcsh:Chemical technology01 natural scienceslcsh:ChemistryChemical Engineering (miscellaneous)lcsh:TP1-1185021108 energythermal decomposition0105 earth and related environmental sciencesheating valuewheat strawProcess Chemistry and TechnologyThermal decompositionfood and beveragesStrawTorrefactionPulp and paper industrypelletsAdiabatic flame temperaturereactivitylcsh:QD1-999peatHeat of combustionMass fractionmicrowave pretreatmentwoodcombustionProcesses
researchProduct

Heat-capacity anomaly due to spin reorientation and thermodynamic functions of ErFeO3 and TmFeO3

2001

Abstract Heat capacities of orthoferrites, ErFeO 3 and TmFeO 3 , have been measured below room temperature by adiabatic calorimetry. A broad but definite anomaly due to the spin reorientation phenomenon was successfully detected in the expected temperature range (ca. 90 K). The results are compared with a vast anomaly reported for YbFeO 3 . The temperature dependence of the electric quadrupole splitting of the Fe nuclear levels was determined by Mossbauer spectroscopy through the spin reorientation. A heat capacity anomaly centered at 3.60 K due to the magnetic ordering of Er 3+ ions was clearly detected. Some Schottky anomalies were resolved and energy splittings involved were roughly esti…

Materials scienceCondensed matter physicsMössbauer spectroscopyCalorimetryQuadrupole splittingAtmospheric temperature rangeAnomaly (physics)Condensed Matter PhysicsAdiabatic processSpin (physics)Heat capacityElectronic Optical and Magnetic MaterialsJournal of Magnetism and Magnetic Materials
researchProduct

Ionization potential of aluminum clusters

1998

Structure, electronic structure, and ionization potential of aluminum clusters of 2–23 atoms are studied with a total energy method based on the density-functional theory. The calculated adiabatic ionization potentials agree remarkably well with the data from threshold photoionization measurements. The analysis of results gives insight into hybridization effects in the smallest clusters as well as reveals certain clusters that exhibit a clear jellium-type shell structure. An explanation of the experimental results in the size region of 12–23 atoms is given in terms of coexisting, competing icosahedral, decahedral, and fcc-based clusters. @S0163-1829~98!00228-8#

Materials scienceIcosahedral symmetryIonizationPhysics::Atomic and Molecular ClustersThermal ionizationElectronic structurePhotoionizationIonization energyAdiabatic processMolecular physicsElectron ionization
researchProduct

Laser plasma plume structure and dynamics in the ambient air: The early stage of expansion

2011

Laser ablation plasma plume expanding into the ambient atmosphere may be an efficient way to produce nanoparticles. From that reason it would be interesting to study the properties of these laser induced plasmas formed under conditions that are known to be favorable for nanoparticles production. In general, plume behavior can be described as a two-stage process: a “violent” plume expansion due to the absorption of the laser beam energy (during the laser pulse) followed by a fast adiabatic expansion in the ambient gas (after the end of the laser pulse). Plasma plume may last a few microseconds and may have densities 10−6 times lower than the solid densities at temperatures close to the ambie…

Materials scienceLaser ablationbusiness.industryGeneral Physics and AstronomyPlasmaLaserlaw.inventionPlumeOpticslawElectron temperaturePlasma diagnosticsAtomic physicsAbsorption (electromagnetic radiation)businessAdiabatic processJournal of Applied Physics
researchProduct

Mechanocaloric effects in superionic thin films from atomistic simulations

2017

Solid-state cooling is an energy-efficient and scalable refrigeration technology that exploits the adiabatic variation of a crystalline order parameter under an external field (electric, magnetic, or mechanic). The mechanocaloric effect bears one of the greatest cooling potentials in terms of energy efficiency owing to its large available latent heat. Here we show that giant mechanocaloric effects occur in thin films of well-known families of fast-ion conductors, namely Li-rich (Li3OCl) and type-I (AgI), an abundant class of materials that routinely are employed in electrochemistry cells. Our simulations reveal that at room temperature AgI undergoes an adiabatic temperature shift of 38 K un…

Materials scienceScienceGeneral Physics and AstronomyIonic bonding02 engineering and technologyCooling capacity01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticlechemistry.chemical_compound0103 physical sciencesThin filmlcsh:Science010306 general physicsAdiabatic processElectrical conductorMultidisciplinaryQSilver iodideRefrigerationBiaxial tensile testGeneral Chemistry021001 nanoscience & nanotechnologychemistryChemical physicslcsh:Q0210 nano-technologyNature Communications
researchProduct

Tuning of High-Order Harmonics for Soft X-Ray Laser Seeding

2011

Within this work we present results of an experimental campaign studying the influence of the adiabatic and non-adiabatic blue shift on high-order harmonic (HH) radiation spectra. The results demonstrate that we are able to spectrally tune the HH radiation to cover more than 50% of the spectrum between 17 nm and 35 nm, paving the way to performing injection-seeded soft X-ray laser (SXRL) experiments with Mo, Zr and Y.

Materials sciencebusiness.industryRadiationLaserSpectral lineBlueshiftlaw.inventionOpticslawHarmonicsHarmonicSeedingbusinessAdiabatic process
researchProduct

Analytic solutions of the diffusion-deposition equation for fluids heavir than atmospheric air

2008

A steady-state bi-dimensional turbulent diffusion equation was studied to find the concentration distribution of a pollutant near the ground. We have considered the air pollutant emitted from an elevated point source in the lower atmosphere in adiabatic conditions. The wind velocity and diffusion coefficient are given by power laws. We have found analytical solutions using or the Lie Group Analysis or the Method of Separation of Variables. The classical diffusion equation has been modified introducing the falling term with non-zero deposition velocity. Analytical solutions are essential to test numerical models for the great difficulty in validating with experiments.

Mathematical optimizationMaterials scienceTurbulent diffusionDiffusion equationDeposition (aerosol physics)Analytic solutions Diffusion-deposition equationSeparation of variablesMechanicsDiffusion (business)Adiabatic processPower lawSettore MAT/07 - Fisica MatematicaWind speed
researchProduct