Search results for "Diabatic"
showing 10 items of 303 documents
Onset of convection in a porous rectangular channel with external heat transfer to upper and lower fluid environments
2012
Published version of an article in the journal: Transport in Porous Media. Also available from the publisher at: http://dx.doi.org/10.1007/s11242-012-0018-9 The conditions for the onset of convection in a horizontal rectangular channel filled with a fluid saturated porous medium are studied. The vertical sidewalls are assumed to be impermeable and adiabatic. The horizontal upper and lower boundary walls are considered as impermeable and subject to external heat transfer, modelled through a third-kind boundary condition on the temperature field. The external fluid environments above and below the channel, kept at different temperatures, provide the heating-from-below mechanism which may lead…
Primordial dark matter from curvature induced symmetry breaking
2020
We demonstrate that adiabatic dark matter can be generated by gravity induced symmetry breaking during inflation. We study a $Z_2$ symmetric scalar singlet that couples to other fields only through gravity and for which the symmetry is broken by the spacetime curvature during inflation when the non-minimal coupling $\xi$ is negative. We find that the symmetry breaking leads to the formation of adiabatic dark matter with the observed abundance for the singlet mass $m\sim{\rm MeV}$ and $|\xi|\sim 1$.
Universal thermodynamic properties of the intracluster medium over two decades in radius in the X-COP sample
2018
The hot plasma in galaxy clusters is expected to be heated to high temperatures through shocks and adiabatic compression. The thermodynamical properties of the gas encode information on the processes leading to the thermalization of the gas in the cluster's potential well as well as non-gravitational processes such as gas cooling, AGN feedback and kinetic energy. In this work we present the radial profiles of the thermodynamic properties of the intracluster medium (ICM) out to the virial radius for a sample of 12 galaxy clusters selected from the Planck all-sky survey. We determine the universal profiles of gas density, temperature, pressure, and entropy over more than two decades in radius…
Ground and excited state geometries via Mukherjee’s multireference coupled-cluster method
2012
Abstract A comprehensive study of molecular equilibrium structures is conducted to benchmark the multireference coupled-cluster (CC) method suggested by Mukherjee and coworkers (Mk-MRCC). We determine equilibrium structures and adiabatic excitation energies by applying the Mk-MRCC method within the singles and doubles (SD) approximation to ground and excited states of various small and medium-sized molecules. The results are compared to those obtained using other multireference or single-reference CC methods. For most molecules with a multireference ground state, it is found that equilibrium structures and excitation energies computed at the Mk-MRCCSD, equation-of-motion CCSD, multireferenc…
Three-state Landau-Zener model in the presence of dissipation
2019
A population transfer based on adiabatic evolutions in a three-state system undergoing an avoided crossing is considered. The efficiency of the process is analyzed in connection with the relevant parameters, bringing to light an important role of the phases of the coupling constants. The role of dissipation is also taken into account, focusing on external decays that can be described by effective non-Hermitian Hamiltonians. Though the population transfer turns out to be quite sensitive to the decay processes, for very large decay rates the occurrence of a Zeno-phenomenon allows for restoring a very high efficiency.
Quantum capture of charged particles by rapidly rotating symmetric top molecules with small dipole moments: analytical comparison of the fly-wheel an…
2013
The rate coefficients for capture of charged particles by spherical top molecules, which by isotopic substitution become symmetric top molecules with small dipole moment, are expressed analytically for the two limiting cases of weak coupling of the molecular angular momentum to the collision axis (dominating Coriolis interaction, the fly-wheel [FW] approximation) and strong coupling (negligible Coriolis interaction, the adiabatic channel [AC] approximation). The comparison leads to relations between rate coefficients for ultra-low (FW) and moderate (AC) temperatures and defines the range of parameters for which the analytical expressions become insufficient and a numerical treatment is nece…
Quantum effects in the capture of charged particles by dipolar polarizable symmetric top molecules. II. Interplay between electrostatic and gyroscopi…
2013
ally nonadiabatic channel treatment of the capture of charged particles by dipolar polarizable symmetric top molecules with the aim to reveal quantum effects in the collision dynamics. In general, these effects are related to the discrete nature of the intrinsic, orbital, and total angular momenta, to the quantum character of passage of collision partners across effective potential barriers and drops, and to the interplay of two types of anisotropic interactions, the gyroscopic (Coriolis) and the electrostatic ones. The latter feature, in principle, leads to a coupling of capture channels. In the calculation of capture cross sections or rate coefficients, however, this coupling can be ignor…
Computational investigation and experimental considerations for the classical implementation of a full adder on SO2 by optical pump-probe schemes
2008
International audience; Following the scheme recently proposed by Remacle and Levine Phys. Rev. A 73, 033820 2006 , we investigate the concrete implementation of a classical full adder on two electronic states X˜ 1A1 and C ˜ 1B2 of the SO2 molecule by optical pump-probe laser pulses using intuitive and counterintuitive stimulated Raman adiabatic passage excitation schemes. The resources needed for providing the inputs and reading out are discussed, as well as the conditions for achieving robustness in both the intuitive and counterintuitive pump-dump sequences. The fidelity of the scheme is analyzed with respect to experimental noise and two kinds of perturbations: The coupling to the neigh…
Time-dependent alignment of molecules trapped in octahedral crystal fields.
2006
The hindered rotational states of molecules confined in crystal fields of octahedral symmetry, and their time-dependent alignment obtained by pulsed nonresonant laser fields, are studied computationally. The control over the molecular axis direction is discussed based on the evolution of the rotational wave packet generated in the cubic crystal-field potential. The alignment degree obtained in a cooperative case, where the alignment field is applied in a favorable crystal-field direction, or in a competitive direction, where the crystal field has a saddle point, is presented. The investigation is divided into two time regimes where the pulse duration is either ultrashort, leading to nonadia…
Connection between optimal control theory and adiabatic-passage techniques in quantum systems
2012
This work explores the relationship between optimal control theory and adiabatic passage techniques in quantum systems. The study is based on a geometric analysis of the Hamiltonian dynamics constructed from the Pontryagin Maximum Principle. In a three-level quantum system, we show that the Stimulated Raman Adiabatic Passage technique can be associated to a peculiar Hamiltonian singularity. One deduces that the adiabatic pulse is solution of the optimal control problem only for a specific cost functional. This analysis is extended to the case of a four-level quantum system.