Search results for "Diffeomorphism"
showing 10 items of 46 documents
Perturbations of the derivative along periodic orbits
2006
International audience; We show that a periodic orbit of large period of a diffeomorphism or flow, either admits a dominated splitting of a prescribed strength, or can be turned into a sink or a source by a C1-small perturbation along the orbit. As a consequence we show that the linear Poincaré flow of a C1-vector field admits a dominated splitting over any robustly transitive set.
Counterexamples to the Kneser conjecture in dimension four.
1995
We construct a connected closed orientable smooth four-manifold whose fundamental group is the free product of two non-trivial groups such that it is not homotopy equivalent toM 0#M 1 unlessM 0 orM 1 is homeomorphic toS 4. LetN be the nucleus of the minimal elliptic Enrique surfaceV 1(2, 2) and putM=N∪ ∂NN. The fundamental group ofM splits as ℤ/2 * ℤ/2. We prove thatM#k(S 2×S2) is diffeomorphic toM 0#M 1 for non-simply connected closed smooth four-manifoldsM 0 andM 1 if and only ifk≥8. On the other hand we show thatM is homeomorphic toM 0#M 1 for closed topological four-manifoldsM 0 andM 1 withπ 1(Mi)=ℤ/2.
Topological classification of gradient-like diffeomorphisms on 3-manifolds
2004
Abstract We give a complete invariant, called global scheme , of topological conjugacy classes of gradient-like diffeomorphisms, on compact 3-manifolds. Conversely, we can realize any abstract global scheme by such a diffeomorphism.
Conjugate unstable manifolds and their underlying geometrized Markov partitions
2000
Abstract Conjugate unstable manifolds of saturated hyperbolic sets of Smale diffeomorphisms are characterized in terms of the combinatorics of their geometrized Markov partitions. As a consequence, the relationship between the local and the global point of view is also made explicit.
Transitive partially hyperbolic diffeomorphisms on 3-manifolds
2005
Abstract The known examples of transitive partially hyperbolic diffeomorphisms on 3-manifolds belong to 3 basic classes: perturbations of skew products over an Anosov map of T 2 , perturbations of the time one map of a transitive Anosov flow, and certain derived from Anosov diffeomorphisms of the torus T 3 . In this work we characterize the two first types by a local hypothesis associated to one closed periodic curve.
Real quadrics in C n , complex manifolds and convex polytopes
2006
In this paper, we investigate the topology of a class of non-Kähler compact complex manifolds generalizing that of Hopf and Calabi-Eckmann manifolds. These manifolds are diffeomorphic to special systems of real quadrics Cn which are invariant with respect to the natural action of the real torus (S1)n onto Cn. The quotient space is a simple convex polytope. The problem reduces thus to the study of the topology of certain real algebraic sets and can be handled using combinatorial results on convex polytopes. We prove that the homology groups of these compact complex manifolds can have arbitrary amount of torsion so that their topology is extremely rich. We also resolve an associated wall-cros…
$n$-harmonic coordinates and the regularity of conformal mappings
2014
This article studies the smoothness of conformal mappings between two Riemannian manifolds whose metric tensors have limited regularity. We show that any bi-Lipschitz conformal mapping or $1$-quasiregular mapping between two manifolds with $C^r$ metric tensors ($r > 1$) is a $C^{r+1}$ conformal (local) diffeomorphism. This result was proved in [12, 27, 33], but we give a new proof of this fact. The proof is based on $n$-harmonic coordinates, a generalization of the standard harmonic coordinates that is particularly suited to studying conformal mappings. We establish the existence of a $p$-harmonic coordinate system for $1 < p < \infty$ on any Riemannian manifold.
Free field realization of cylindrically symmetric Einstein gravity
1998
Cylindrically reduced Einstein gravity can be regarded as an $SL(2,R)/SO(2)$ sigma model coupled to 2D dilaton gravity. By using the corresponding 2D diffeomorphism algebra of constraints and the asymptotic behaviour of the Ernst equation we show that the theory can be mapped by a canonical transformation into a set of free fields with a Minkowskian target space. We briefly discuss the quantization in terms of these free-field variables, which is considerably simpler than in the other approaches.
Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphisms
1996
AbstractWe study a generic, real analytic unfolding of a planar diffeomorphism having a fixed point with unipotent linear part. In the analogue for vector fields an open parameter domain is known to exist, with a unique limit cycle. This domain is bounded by curves corresponding to a Hopf bifurcation and to a homoclinic connection. In the present case of analytic diffeomorphisms, a similar domain is shown to exist, with a normally hyperbolic invariant circle. It follows that all the ‘interesting’ dynamics, concerning the destruction of the invariant circle and the transition to trivial dynamics by the creation and death of homoclinic points, takes place in an exponentially small part of the…
Perturbation of the Lyapunov spectra of periodic orbits
2012
We describe all Lyapunov spectra that can be obtained by perturbing the derivatives along periodic orbits of a diffeomorphism. The description is expressed in terms of the finest dominated splitting and Lyapunov exponents that appear in the limit of a sequence of periodic orbits, and involves the majorization partial order. Among the applications, we give a simple criterion for the occurrence of universal dynamics.